IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920310266.html
   My bibliography  Save this article

From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights

Author

Listed:
  • Walter, Xavier Alexis
  • You, Jiseon
  • Winfield, Jonathan
  • Bajarunas, Ugnius
  • Greenman, John
  • Ieropoulos, Ioannis A.

Abstract

The microbial fuel cell (MFC) technology relies on energy storage and harvesting circuitry to deliver stable power outputs. This increases costs, and for wider deployment into society, these should be kept minimal. The present study reports how a MFC system was developed to continuously power public toilet lighting, with for the first time no energy storage nor harvesting circuitry. Two different stacks, one consisting of 15 and the other 18 membrane-less MFC modules, were operated for 6 days and fuelled by the urine of festival goers at the 2019 Glastonbury Music Festival. The 15-module stack was directly connected to 2 spotlights each comprising 6 LEDs. The 18-module stack was connected to 2 identical LED spotlights but going through 2 LED electronic controller/drivers. Twenty hours after inoculation the stacks were able to directly power the bespoke lighting system. The electrical energy produced by the 15-module stack evolved with usage from ≈280 mW (≈2.650 V at ≈105 mA) at the beginning to ≈860 mW (≈2.750 V at ≈300 mA) by the end of the festival. The electrical energy produced by the LED-driven 18-module stack increased from ≈490 mW at the beginning to ≈680 mW toward the end of the festival. During this period, illumination was above the legal standards for outdoor public areas, with the 15-module stack reaching a maximum of ≈89 Lx at 220 cm. These results demonstrate for the first time that the MFC technology can be deployed as a direct energy source in decentralised area (e.g. refugee camps).

Suggested Citation

  • Walter, Xavier Alexis & You, Jiseon & Winfield, Jonathan & Bajarunas, Ugnius & Greenman, John & Ieropoulos, Ioannis A., 2020. "From the lab to the field: Self-stratifying microbial fuel cells stacks directly powering lights," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310266
    DOI: 10.1016/j.apenergy.2020.115514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920310266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walter, Xavier Alexis & Stinchcombe, Andrew & Greenman, John & Ieropoulos, Ioannis, 2017. "Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging," Applied Energy, Elsevier, vol. 192(C), pages 575-581.
    2. Trapero, Juan R. & Horcajada, Laura & Linares, Jose J. & Lobato, Justo, 2017. "Is microbial fuel cell technology ready? An economic answer towards industrial commercialization," Applied Energy, Elsevier, vol. 185(P1), pages 698-707.
    3. Escapa, A. & Mateos, R. & Martínez, E.J. & Blanes, J., 2016. "Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 942-956.
    4. Fischer, Fabian & Sugnaux, Marc & Savy, Cyrille & Hugenin, Gérald, 2018. "Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up," Applied Energy, Elsevier, vol. 230(C), pages 1633-1644.
    5. Slate, Anthony J. & Whitehead, Kathryn A. & Brownson, Dale A.C. & Banks, Craig E., 2019. "Microbial fuel cells: An overview of current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 60-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Ramón-Fernández, A. & Salar-García, M.J. & Ruiz Fernández, D. & Greenman, J. & Ieropoulos, I.A., 2020. "Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells," Energy, Elsevier, vol. 213(C).
    2. Theofilos Kamperidis & Asimina Tremouli & Gerasimos Lyberatos, 2023. "Architecture Optimization of a Single-Chamber Air-Cathode MFC by Increasing the Number of Cathode Electrodes," Sustainability, MDPI, vol. 15(17), pages 1-12, August.
    3. Kamali, Mohammadreza & Guo, Yutong & Aminabhavi, Tejraj M. & Abbassi, Rouzbeh & Dewil, Raf & Appels, Lise, 2023. "Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Bhim Sen Thapa & Soumya Pandit & Sanchita Bipin Patwardhan & Sakshi Tripathi & Abhilasha Singh Mathuriya & Piyush Kumar Gupta & Ram Bharosay Lal & Tanmoy Roy Tusher, 2022. "Application of Microbial Fuel Cell (MFC) for Pharmaceutical Wastewater Treatment: An Overview and Future Perspectives," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    3. Fischer, Fabian & Sugnaux, Marc & Savy, Cyrille & Hugenin, Gérald, 2018. "Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up," Applied Energy, Elsevier, vol. 230(C), pages 1633-1644.
    4. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    5. Leicester, Daniel & Amezaga, Jaime & Heidrich, Elizabeth, 2020. "Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Dawid Nosek & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2020. "Anode Modification as an Alternative Approach to Improve Electricity Generation in Microbial Fuel Cells," Energies, MDPI, vol. 13(24), pages 1-22, December.
    7. Yifan Yu & Jafar Ali & Yuesuo Yang & Peijing Kuang & Wenjing Zhang & Ying Lu & Yan Li, 2022. "Synchronous Cr(VI) Remediation and Energy Production Using Microbial Fuel Cell from a Subsurface Environment: A Review," Energies, MDPI, vol. 15(6), pages 1-22, March.
    8. Eva Segura & Rafael Morales & José A. Somolinos, 2017. "Cost Assessment Methodology and Economic Viability of Tidal Energy Projects," Energies, MDPI, vol. 10(11), pages 1-27, November.
    9. Satinover, Scott J. & Schell, Dan & Borole, Abhijeet P., 2020. "Achieving high hydrogen productivities of 20 L/L-day via microbial electrolysis of corn stover fermentation products," Applied Energy, Elsevier, vol. 259(C).
    10. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    11. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    12. Rui N. L. Carvalho & Luisa L. Monteiro & Silvia A. Sousa & Sudarsu V. Ramanaiah & Jorge H. Leitão & Cristina M. Cordas & Luis P. Fonseca, 2023. "Design and Optimization of Microbial Fuel Cells and Evaluation of a New Air-Breathing Cathode Based on Carbon Felt Modified with a Hydrogel—Ion Jelly ®," Energies, MDPI, vol. 16(10), pages 1-24, May.
    13. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Beegle, Jeffrey R. & Borole, Abhijeet P., 2018. "Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 343-351.
    15. Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
    16. Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
    17. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    19. Chouhan, Raghuraj Singh & Gandhi, Sonu & Verma, Suresh K. & Jerman, Ivan & Baker, Syed & Štrok, Marko, 2023. "Recent advancements in the development of Two-Dimensional nanostructured based anode materials for stable power density in microbial fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Rickelmi Agüero-Quiñones & Zairi Ávila-Sánchez & Segundo Rojas-Flores & Luis Cabanillas-Chirinos & Magaly De La Cruz-Noriega & Renny Nazario-Naveda & Walter Rojas-Villacorta, 2023. "Activated Carbon Electrodes for Bioenergy Production in Microbial Fuel Cells Using Synthetic Wastewater as Substrate," Sustainability, MDPI, vol. 15(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920310266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.