IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v260y2020ics0306261919319567.html
   My bibliography  Save this article

Effects of partitioned fuel distribution on auto-ignition and knocking under spark assisted compression ignition conditions

Author

Listed:
  • Chen, Lin
  • Zhang, Ren
  • Pan, Jiaying
  • Wei, Haiqiao

Abstract

Spark-assisted compression ignition (SACI) is a potential way to enhance ignition-control robustness and extend the load range of homogeneous charge compression ignition (HCCI) engines. However, the mechanism underlying combustion mode transition without knocking is not completely elucidated. Using direct high-speed photography and simultaneous pressure acquisition, the proposed study examines different auto-ignition and engine knock scenarios under SACI conditions. A small amount of heptane was directly injected into premixed methane-air mixture to modify local mixture reactivity. Additionally, late side injection was adopted to achieve stable SACI combustion whilst suppressing knocking combustion. Results obtained demonstrate that SACI combustion is essentially determined by the stochastic auto-ignition of the unburned end-gas mixture. End-gas mixture auto-ignition becomes stable thus normal SACI under conditions of high mixture reactivity, but a further rise in mixture reactivity causes engine knock prevail. To suppress SACI knocking, partitioned distribution of heptane via side injection has been found to be significantly effective. Results demonstrate that partitioned fuel distribution via late injection can greatly reduce the knock intensity, thereby implying a transition from SACI knocking to normal SACI combustion. Further analysis demonstrates that knock intensity is determined by the peak heat release rate of auto-ignition and there exists distinct boundaries between different combustion modes. The corresponding threshold value characterizing knocking combustion is approximately 202.30 J/CAD under current conditions. Besides, the peak heat release rate is related to the auto-ignition propagation speed and can be adjusted by the partitioned fuel distribution. The proposed study provides great insight into realizing and controlling SACI combustion to improve engine efficiency.

Suggested Citation

  • Chen, Lin & Zhang, Ren & Pan, Jiaying & Wei, Haiqiao, 2020. "Effects of partitioned fuel distribution on auto-ignition and knocking under spark assisted compression ignition conditions," Applied Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319567
    DOI: 10.1016/j.apenergy.2019.114269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919319567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.
    2. Singh, Akhilendra Pratap & Agarwal, Avinash Kumar, 2012. "Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique," Applied Energy, Elsevier, vol. 99(C), pages 116-125.
    3. Wei, Haiqiao & Feng, Dengquan & Pan, Jiaying & Shao, Aifang & Pan, Mingzhang, 2017. "Knock characteristics of SI engine fueled with n-butanol in combination with different EGR rate," Energy, Elsevier, vol. 118(C), pages 190-196.
    4. Vafamehr, Hassan & Cairns, Alasdair & Sampson, Ojon & Koupaie, Mohammadmohsen Moslemin, 2016. "The competing chemical and physical effects of transient fuel enrichment on heavy knock in an optical spark ignition engine," Applied Energy, Elsevier, vol. 179(C), pages 687-697.
    5. Olesky, Laura Manofsky & Martz, Jason B. & Lavoie, George A. & Vavra, Jiri & Assanis, Dennis N. & Babajimopoulos, Aristotelis, 2013. "The effects of spark timing, unburned gas temperature, and negative valve overlap on the rates of stoichiometric spark assisted compression ignition combustion," Applied Energy, Elsevier, vol. 105(C), pages 407-417.
    6. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    7. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier & Durrett, Russell, 2014. "Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept," Applied Energy, Elsevier, vol. 134(C), pages 90-101.
    8. Zhou, Lei & Hua, Jianxiong & Wei, Haiqiao & Dong, Kai & Feng, Dengquan & Shu, Gequn, 2018. "Knock characteristics and combustion regime diagrams of multiple combustion modes based on experimental investigations," Applied Energy, Elsevier, vol. 229(C), pages 31-41.
    9. Yang, Dong-bo & Wang, Zhi & Wang, Jian-Xin & Shuai, Shi-jin, 2011. "Experimental study of fuel stratification for HCCI high load extension," Applied Energy, Elsevier, vol. 88(9), pages 2949-2954.
    10. Pastor, J.V. & García-Oliver, J.M. & García, A. & Micó, C. & Durrett, R., 2013. "A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion," Applied Energy, Elsevier, vol. 104(C), pages 568-575.
    11. Bendu, Harisankar & Murugan, S., 2014. "Homogeneous charge compression ignition (HCCI) combustion: Mixture preparation and control strategies in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 732-746.
    12. Lawler, Benjamin & Lacey, Joshua & Güralp, Orgun & Najt, Paul & Filipi, Zoran, 2018. "HCCI combustion with an actively controlled glow plug: The effects on heat release, thermal stratification, efficiency, and emissions," Applied Energy, Elsevier, vol. 211(C), pages 809-819.
    13. Xie, Hui & Li, Le & Chen, Tao & Yu, Weifei & Wang, Xinyan & Zhao, Hua, 2013. "Study on spark assisted compression ignition (SACI) combustion with positive valve overlap at medium–high load," Applied Energy, Elsevier, vol. 101(C), pages 622-633.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yong & Ma, Yinjie & Xie, Deyi & Yu, Zhenhuan & E, Jiaqiang, 2021. "Numerical study on the influence of gasoline properties and thermodynamic conditions on premixed laminar flame velocity at multiple conditions," Energy, Elsevier, vol. 233(C).
    2. Rami Y. Dahham & Haiqiao Wei & Jiaying Pan, 2022. "Improving Thermal Efficiency of Internal Combustion Engines: Recent Progress and Remaining Challenges," Energies, MDPI, vol. 15(17), pages 1-60, August.
    3. Huang, Zhiwei & Zhang, Huangwei, 2020. "Investigations of autoignition and propagation of supersonic ethylene flames stabilized by a cavity," Applied Energy, Elsevier, vol. 265(C).
    4. Yixiang Yuan & Qinghua Zeng & Jun Yao & Yongjun Zhang & Mengmeng Zhao & Lu Zhao, 2021. "Improving Blowout Performance of the Conical Swirler Combustor by Employing Two Parts of Fuel at Low Operating Condition," Energies, MDPI, vol. 14(6), pages 1-11, March.
    5. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Lei & Hua, Jianxiong & Wei, Haiqiao & Dong, Kai & Feng, Dengquan & Shu, Gequn, 2018. "Knock characteristics and combustion regime diagrams of multiple combustion modes based on experimental investigations," Applied Energy, Elsevier, vol. 229(C), pages 31-41.
    2. Lijia Zhong & Changwen Liu, 2019. "Numerical Analysis of End-Gas Autoignition and Pressure Oscillation in a Downsized SI Engine Using Large Eddy Simulation," Energies, MDPI, vol. 12(20), pages 1-20, October.
    3. Zhou, Lei & Song, Yuntong & Hua, Jianxiong & Liu, Fengnian & Wei, Haiqiao, 2020. "Effects of miller cycle strategies on combustion characteristics and knock resistance in a spark assisted compression ignition (SACI) engine," Energy, Elsevier, vol. 206(C).
    4. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Andwari, Amin Mahmoudzadeh & Aziz, Azhar Abdul & Said, Mohd Farid Muhamad & Latiff, Zulkarnain Abdul, 2014. "Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine," Applied Energy, Elsevier, vol. 134(C), pages 1-10.
    6. Wang, Xinyan & Zhao, Hua & Xie, Hui, 2016. "Effect of dilution strategies and direct injection ratios on stratified flame ignition (SFI) hybrid combustion in a PFI/DI gasoline engine," Applied Energy, Elsevier, vol. 165(C), pages 801-814.
    7. Song, Kang & Wang, Xinyan & Xie, Hui, 2018. "Trade-off on fuel economy, knock, and combustion stability for a stratified flame-ignited gasoline engine," Applied Energy, Elsevier, vol. 220(C), pages 437-446.
    8. Hasan, M.M. & Rahman, M.M., 2016. "Homogeneous charge compression ignition combustion: Advantages over compression ignition combustion, challenges and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 282-291.
    9. Wei, Haiqiao & Hua, Jianxiong & Pan, Mingzhang & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2018. "Experimental investigation on knocking combustion characteristics of gasoline compression ignition engine," Energy, Elsevier, vol. 143(C), pages 624-633.
    10. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).
    11. Ma, Shuaiying & Zheng, Zunqing & Liu, Haifeng & Zhang, Quanchang & Yao, Mingfa, 2013. "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion," Applied Energy, Elsevier, vol. 109(C), pages 202-212.
    12. Kumar, Pravin & Rehman, A., 2016. "Bio-diesel in homogeneous charge compression ignition (HCCI) combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 536-550.
    13. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    14. Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.
    15. An, Yanzhao & Raman, Vallinayagam & Tang, Qinglong & Shi, Hao & Sim, Jaeheon & Chang, Junseok & Magnotti, Gaetano & Johansson, Bengt, 2019. "Combustion stability study of partially premixed combustion with low-octane fuel at low engine load conditions," Applied Energy, Elsevier, vol. 235(C), pages 56-67.
    16. Yew Heng Teoh & Hishammudin Afifi Huspi & Heoy Geok How & Farooq Sher & Zia Ud Din & Thanh Danh Le & Huu Tho Nguyen, 2021. "Effect of Intake Air Temperature and Premixed Ratio on Combustion and Exhaust Emissions in a Partial HCCI-DI Diesel Engine," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    17. Feng, Dengquan & Wei, Haiqiao & Pan, Mingzhang & Zhou, Lei & Hua, Jianxiong, 2018. "Combustion performance of dual-injection using n-butanol direct-injection and gasoline port fuel-injection in a SI engine," Energy, Elsevier, vol. 160(C), pages 573-581.
    18. Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier & Lago Sari, Rafael, 2018. "Fuel consumption and engine-out emissions estimations of a light-duty engine running in dual-mode RCCI/CDC with different fuels and driving cycles," Energy, Elsevier, vol. 157(C), pages 19-30.
    19. Charalambides, A.G. & Sahu, S. & Hardalupas, Y. & Taylor, A.M.K.P. & Urata, Y., 2018. "Evaluation of Homogeneous Charge Compression Ignition (HCCI) autoignition development through chemiluminescence imaging and Proper Orthogonal Decomposition," Applied Energy, Elsevier, vol. 210(C), pages 288-302.
    20. Xu, Han & Weng, Chunsheng & Gao, Jian & Yao, Chunde, 2020. "The effect of energy intensification on the formation of severe knock in internal combustion engines," Applied Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.