IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318628.html
   My bibliography  Save this article

Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell

Author

Listed:
  • Han, Gwangwoo
  • Kwon, YongKeun
  • Kim, Joong Bae
  • Lee, Sanghun
  • Bae, Joongmyeon
  • Cho, EunAe
  • Lee, Bong Jae
  • Cho, Sungbaek
  • Park, Jinwoo

Abstract

A hydrogen energy storage system for portable/mobile applications such as personal power sources and unmanned underwater vehicles is developed. An application-oriented design and system integration strategy are newly suggested to maximize energy density while incorporating conventional technologies for the electrolyzer (Ely), the metal hydride (MH), and the polymer electrolyte membrane fuel cell (PEMFC). To improve both the energy density and usability, the systems for charging and discharging are separated. The charging component is composed of a water Ely (0.5 Nm3 h−1) and an MH cooling device as one system. The discharging component consists of an MH (900 NL H2), a PEMFC stack (50 W), and a power conditioning system (PCS) as a single system. The MH material and engineering properties are investigated to find an MH that is suitable for the target system. The hybrid design and operating strategy of the PEMFC and PCS are developed to maximize energy density. The prototype system provides a nominal power output of 31.5 W at 12 V for 38 h with one recharging. We find it significant that the discharging component shows an energy density of 410 Wh L−1, which is twice that of conventional energy storage systems at the 2.9-L level.

Suggested Citation

  • Han, Gwangwoo & Kwon, YongKeun & Kim, Joong Bae & Lee, Sanghun & Bae, Joongmyeon & Cho, EunAe & Lee, Bong Jae & Cho, Sungbaek & Park, Jinwoo, 2020. "Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318628
    DOI: 10.1016/j.apenergy.2019.114175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghosh, P.C. & Vasudeva, U., 2011. "Analysis of 3000T class submarines equipped with polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(5), pages 3138-3147.
    2. Han, Hun Sik & Cho, Changhwan & Kim, Seo Young & Hyun, Jae Min, 2013. "Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer," Applied Energy, Elsevier, vol. 105(C), pages 125-137.
    3. Alejandro Mendez & Teresa J. Leo & Miguel A. Herreros, 2014. "Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles," Energies, MDPI, vol. 7(7), pages 1-18, July.
    4. Paul, Biddyut & Andrews, John, 2017. "PEM unitised reversible/regenerative hydrogen fuel cell systems: State of the art and technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 585-599.
    5. Kim, Sung Han & Miesse, Craig M. & Lee, Hee Bum & Chang, Ik Whang & Hwang, Yong Sheen & Jang, Jae Hyuk & Cha, Suk Won, 2014. "Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone," Applied Energy, Elsevier, vol. 134(C), pages 382-391.
    6. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    7. Chung, C.A. & Yang, Su-Wen & Yang, Chien-Yuh & Hsu, Che-Weu & Chiu, Pai-Yuh, 2013. "Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer," Applied Energy, Elsevier, vol. 103(C), pages 581-587.
    8. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    9. Wang, Xiaoming & Shang, Jianzhong & Luo, Zirong & Tang, Li & Zhang, Xiangpo & Li, Juan, 2012. "Reviews of power systems and environmental energy conversion for unmanned underwater vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1958-1970.
    10. Kavadias, K.A. & Apostolou, D. & Kaldellis, J.K., 2018. "Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network," Applied Energy, Elsevier, vol. 227(C), pages 574-586.
    11. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2016. "A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 961-977.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Xiangyu & Lu, Buchu & Dong, Hao & Liu, Qibin, 2023. "Solar-promoted photo-thermal CH4 reforming with CO2 over Ni/CeO2 catalyst: Experimental and mechanism studies," Applied Energy, Elsevier, vol. 348(C).
    2. Wang, Yi & Qiu, Dawei & Strbac, Goran, 2022. "Multi-agent deep reinforcement learning for resilience-driven routing and scheduling of mobile energy storage systems," Applied Energy, Elsevier, vol. 310(C).
    3. Sunku Prasad, J. & Muthukumar, P., 2022. "Design and performance analysis of an annular metal hydride reactor for large-scale hydrogen storage applications," Renewable Energy, Elsevier, vol. 181(C), pages 1155-1166.
    4. Sera Ayten Cetinkaya & Tacettin Disli & Gamze Soyturk & Onder Kizilkan & C. Ozgur Colpan, 2022. "A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers," Energies, MDPI, vol. 16(1), pages 1-23, December.
    5. Pavangat, Athul & Bindhani, Omkar Satyaprakash & Naik, B. Kiran, 2023. "Year-round and techno-economic feasibility analyses on integration of absorption based mobile thermochemical energy storage with building cooling system in tropical climate," Energy, Elsevier, vol. 263(PE).
    6. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Pan, Lyuming & Chen, Dongfang & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries," Applied Energy, Elsevier, vol. 290(C).
    10. Wang, Y. & Rousis, A. Oulis & Strbac, G., 2022. "Resilience-driven optimal sizing and pre-positioning of mobile energy storage systems in decentralized networked microgrids," Applied Energy, Elsevier, vol. 305(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    2. Wilberforce, Tabbi & Ijaodola, O. & Ogungbemi, Emmanuel & Khatib, F.N. & Leslie, T. & El-Hassan, Zaki & Thomposon, J. & Olabi, A.G., 2019. "Technical evaluation of proton exchange membrane (PEM) fuel cell performance – A review of the effects of bipolar plates coating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Cozzolino, Raffaello & Chiappini, Daniele & Tribioli, Laura, 2021. "Off-grid PV/URFC power plant fueled with biogas from food waste: An energetic and economic analysis," Energy, Elsevier, vol. 219(C).
    4. Rocha, A. & Ferreira, R.B. & Falcão, D.S. & Pinto, A.M.F.R., 2023. "Experimental study on a unitized regenerative fuel cell operated in constant electrode mode: Effect of cell design and operating conditions," Renewable Energy, Elsevier, vol. 215(C).
    5. Zhang, Zhonghao & Guo, Mengdi & Yu, Zhonghao & Yao, Siyue & Wang, Jin & Qiu, Diankai & Peng, Linfa, 2022. "A novel cooperative design with optimized flow field on bipolar plates and hybrid wettability gas diffusion layer for proton exchange membrane unitized regenerative fuel cell," Energy, Elsevier, vol. 239(PD).
    6. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
    7. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    8. Iqbal, Jamshed & Khan, Zeashan Hameed, 2017. "The potential role of renewable energy sources in robot's power system: A case study of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 106-122.
    9. Seung-Kyo Jung & Won-Sim Cha & Yeong-In Park & Shin-Hyung Kim & Jungho Choi, 2020. "Conceptual Design Development of a Fuel-Reforming System for Fuel Cells in Underwater Vehicles," Energies, MDPI, vol. 13(8), pages 1-15, April.
    10. Saheli Biswas & Shambhu Singh Rathore & Aniruddha Pramod Kulkarni & Sarbjit Giddey & Sankar Bhattacharya, 2021. "A Theoretical Study on Reversible Solid Oxide Cells as Key Enablers of Cyclic Conversion between Electrical Energy and Fuel," Energies, MDPI, vol. 14(15), pages 1-18, July.
    11. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    12. Lin, Xi & Zhu, Qi & Leng, Haiyan & Yang, Hongguang & Lyu, Tao & Li, Qian, 2019. "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank," Applied Energy, Elsevier, vol. 250(C), pages 1065-1072.
    13. Adam Polak, 2020. "Simulation of Fuzzy Control of Oxygen Flow in PEM Fuel Cells," Energies, MDPI, vol. 13(9), pages 1-26, May.
    14. Luta, Doudou N. & Raji, Atanda K., 2019. "Optimal sizing of hybrid fuel cell-supercapacitor storage system for off-grid renewable applications," Energy, Elsevier, vol. 166(C), pages 530-540.
    15. Fiammetta Rita Bianchi & Barbara Bosio, 2021. "Operating Principles, Performance and Technology Readiness Level of Reversible Solid Oxide Cells," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
    16. Guo, Zhongjie & Wei, Wei & Chen, Laijun & Zhang, Xiaoping & Mei, Shengwei, 2021. "Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs," Energy, Elsevier, vol. 220(C).
    17. Dongsheng Cong & Jianzhong Shang & Zirong Luo & Chongfei Sun & Wei Wu, 2018. "Energy Efficiency Analysis of Multi-Type Floating Bodies for a Novel Heaving Point Absorber with Application to Low-Power Unmanned Ocean Device," Energies, MDPI, vol. 11(12), pages 1-20, November.
    18. Kwan, Trevor Hocksun & Katsushi, Fujii & Shen, Yongting & Yin, Shunan & Zhang, Yongchao & Kase, Kiwamu & Yao, Qinghe, 2020. "Comprehensive review of integrating fuel cells to other energy systems for enhanced performance and enabling polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    19. Han, Gwangwoo & Lee, Sangho & Bae, Joongmyeon, 2015. "Diesel autothermal reforming with hydrogen peroxide for low-oxygen environments," Applied Energy, Elsevier, vol. 156(C), pages 99-106.
    20. Anggito P. Tetuko & Bahman Shabani & John Andrews, 2018. "Passive Fuel Cell Heat Recovery Using Heat Pipes to Enhance Metal Hydride Canisters Hydrogen Discharge Rate: An Experimental Simulation," Energies, MDPI, vol. 11(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.