IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919314175.html
   My bibliography  Save this article

Nonlinear methods for evaluating and online predicting the lifetime of fuel cells

Author

Listed:
  • Pei, Pucheng
  • Chen, Dongfang
  • Wu, Ziyao
  • Ren, Peng

Abstract

Lifetime evaluation and prediction is a key topic for proton exchange membrane (PEM) fuel cells, which can contribute to prolong the durability and accelerate the commercialization of fuel cells. In this paper, a linear formula to evaluate the maximum service lifetime of fuel cells for vehicle applications and several nonlinear formulas to predict the lifetime of fuel cells are presented. The terminal voltage of fuel cells at the rated condition is defined as the average cell voltage decreasing by ca. 10% from the start rated voltage at the rated condition. A nonlinear formula based on the variation of the hydrogen crossover is derived, which reveals that the variation of the hydrogen crossover is the main factor for the nonlinear lifetime degradation of fuel cells. The nonlinear formula based on the time response of first-order control systems (FOCS) for the overall process is proposed, and the segment point between linear and nonlinear degradation is also defined by this formula. Then a more accurate segmented formula with linear lifetime formula and nonlinear lifetime formula based on the time response of FOCSs for the local process is derived. Finally, the segmented formula is verified by experiment results of the single cell and fuel cell stacks and practical operating results of fuel cell vehicles. Moreover, methods for lifetime evaluation in the laboratory and online prediction in the vehicle are proposed.

Suggested Citation

  • Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314175
    DOI: 10.1016/j.apenergy.2019.113730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919314175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sutharssan, Thamo & Montalvao, Diogo & Chen, Yong Kang & Wang, Wen-Chung & Pisac, Claudia & Elemara, Hakim, 2017. "A review on prognostics and health monitoring of proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 440-450.
    2. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    3. Jouin, Marine & Bressel, Mathieu & Morando, Simon & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine & Jemei, Samir & Hilairet, Mickael & Ould Bouamama, Belkacem, 2016. "Estimating the end-of-life of PEM fuel cells: Guidelines and metrics," Applied Energy, Elsevier, vol. 177(C), pages 87-97.
    4. Jouin, Marine & Gouriveau, Rafael & Hissel, Daniel & Péra, Marie-Cécile & Zerhouni, Noureddine, 2016. "Degradations analysis and aging modeling for health assessment and prognostics of PEMFC," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 78-95.
    5. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    6. Zhou, Daming & Gao, Fei & Breaz, Elena & Ravey, Alexandre & Miraoui, Abdellatif, 2017. "Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach," Energy, Elsevier, vol. 138(C), pages 1175-1186.
    7. Bressel, Mathieu & Hilairet, Mickael & Hissel, Daniel & Ould Bouamama, Belkacem, 2016. "Extended Kalman Filter for prognostic of Proton Exchange Membrane Fuel Cell," Applied Energy, Elsevier, vol. 164(C), pages 220-227.
    8. Chen, Huicui & Song, Zhen & Zhao, Xin & Zhang, Tong & Pei, Pucheng & Liang, Chen, 2018. "A review of durability test protocols of the proton exchange membrane fuel cells for vehicle," Applied Energy, Elsevier, vol. 224(C), pages 289-299.
    9. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    10. Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
    11. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    12. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    13. Bae, Suk Joo & Kim, Seong-Joon & Lee, Jin-Hwa & Song, Inseob & Kim, Nam-In & Seo, Yongho & Kim, Ki Buem & Lee, Naesung & Park, Jun-Young, 2014. "Degradation pattern prediction of a polymer electrolyte membrane fuel cell stack with series reliability structure via durability data of single cells," Applied Energy, Elsevier, vol. 131(C), pages 48-55.
    14. Chen, Huicui & Zhao, Xin & Qu, Bingwang & Zhang, Tong & Pei, Pucheng & Li, Congxin, 2018. "An evaluation method of gas distribution quality in dynamic process of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 232(C), pages 26-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    2. Lu Zhang & Yongfeng Liu & Guijun Bi & Xintong Liu & Long Wang & Yuan Wan & Hua Sun, 2022. "Modeling and Experimental Investigation of the Anode Inlet Relative Humidity Effect on a PEM Fuel Cell," Energies, MDPI, vol. 15(13), pages 1-20, June.
    3. Pu, Yuchen & Li, Qi & Zou, Xueli & Li, Ruirui & Li, Luoyi & Chen, Weirong & Liu, Hong, 2021. "Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage," Applied Energy, Elsevier, vol. 302(C).
    4. Feng, Yanbiao & Dong, Zuomin, 2020. "Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost," Applied Energy, Elsevier, vol. 270(C).
    5. Chen, Dongfang & Pei, Pucheng & Ren, Peng & Song, Xin & Wang, He & Zhang, Lu & Wang, Mingkai, 2022. "Analytical methods for the effect of anode nitrogen concentration on performance and voltage consistency of proton exchange membrane fuel cell stack," Energy, Elsevier, vol. 258(C).
    6. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
    7. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Zhang, Lu & Li, Yuehua & Song, Xin & Wang, Mingkai & Wang, He, 2022. "Corrosion of metallic bipolar plates accelerated by operating conditions in a simulated PEM fuel cell cathode environment," Renewable Energy, Elsevier, vol. 194(C), pages 1277-1287.
    8. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    9. Ke Song & Yimin Wang & Xiao Hu & Jing Cao, 2020. "Online Prediction of Vehicular Fuel Cell Residual Lifetime Based on Adaptive Extended Kalman Filter," Energies, MDPI, vol. 13(23), pages 1-21, November.
    10. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    12. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2019. "Degradation model of proton exchange membrane fuel cell based on a novel hybrid method," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    3. Chen, Hong & Zhan, Zhigang & Jiang, Panxing & Sun, Yahao & Liao, Liwen & Wan, Xiongbiao & Du, Qing & Chen, Xiaosong & Song, Hao & Zhu, Ruijie & Shu, Zhanhong & Li, Shang & Pan, Mu, 2022. "Whole life cycle performance degradation test and RUL prediction research of fuel cell MEA," Applied Energy, Elsevier, vol. 310(C).
    4. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
    5. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
    7. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    8. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
    9. Ke Song & Yimin Wang & Xiao Hu & Jing Cao, 2020. "Online Prediction of Vehicular Fuel Cell Residual Lifetime Based on Adaptive Extended Kalman Filter," Energies, MDPI, vol. 13(23), pages 1-21, November.
    10. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Huu-Linh Nguyen & Sang-Min Lee & Sangseok Yu, 2023. "A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 16(12), pages 1-32, June.
    12. Zhang, Xiaojie & Zhang, Tong & Chen, Huicui & Cao, Yinliang, 2021. "A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 286(C).
    13. Wang, Chu & Li, Zhongliang & Outbib, Rachid & Dou, Manfeng & Zhao, Dongdong, 2022. "Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 305(C).
    14. Pei, Pucheng & Meng, Yining & Chen, Dongfang & Ren, Peng & Wang, Mingkai & Wang, Xizhong, 2023. "Lifetime prediction method of proton exchange membrane fuel cells based on current degradation law," Energy, Elsevier, vol. 265(C).
    15. Li, Haolong & Chen, Qihong & Zhang, Liyan & Liu, Li & Xiao, Peng, 2023. "Degradation prediction of proton exchange membrane fuel cell based on the multi-inputs Bi-directional long short-term memory," Applied Energy, Elsevier, vol. 344(C).
    16. Zhang, Caizhi & Zhang, Yuqi & Wang, Lei & Deng, Xiaozhi & Liu, Yang & Zhang, Jiujun, 2023. "A health management review of proton exchange membrane fuel cell for electric vehicles: Failure mechanisms, diagnosis techniques and mitigation measures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Yue, Meiling & Jemei, Samir & Zerhouni, Noureddine & Gouriveau, Rafael, 2021. "Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives," Renewable Energy, Elsevier, vol. 179(C), pages 2277-2294.
    18. Chen, Kui & Laghrouche, Salah & Djerdir, Abdesslem, 2021. "Prognosis of fuel cell degradation under different applications using wavelet analysis and nonlinear autoregressive exogenous neural network," Renewable Energy, Elsevier, vol. 179(C), pages 802-814.
    19. Komini Babu, S. & Spernjak, D. & Dillet, J. & Lamibrac, A. & Maranzana, G. & Didierjean, S. & Lottin, O. & Borup, R.L. & Mukundan, R., 2019. "Spatially resolved degradation during startup and shutdown in polymer electrolyte membrane fuel cell operation," Applied Energy, Elsevier, vol. 254(C).
    20. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919314175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.