IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v236y2019icp560-573.html
   My bibliography  Save this article

Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration

Author

Listed:
  • Yin, Ershuai
  • Li, Qiang
  • Xuan, Yimin

Abstract

This paper provides a novel solar energy utilization system that firstly achieves the cogeneration of photovoltaic, thermoelectric and high-grade heat. The novel concentrating photovoltaic-thermoelectric-thermal cogeneration system can overcome almost all of the disadvantages of the existing systems and provide a better way for solar energy utilization. The operating temperature, energy and exergy efficiency of the new system and the existing systems in different weather and seasons are first compared to demonstrate the superiority of the new structure. The new system is then optimized by investigating the effect of controlled temperature and thermoelectric structure on the hybrid performance to improve the solar energy utilization. Finally, the system array is proposed to reduce the system cost, and the economic analysis of the systems is conducted. The results indicate that when the solar irradiance is high, the new structure can well mitigate the temperature fluctuation caused by the varying solar irradiance and keep the photovoltaic cell operating at a safe temperature. The new system provides more exergy output than the existing systems because it produces both electricity and high-grade thermal output. When the solar irradiance is low, the new system behaviors similar to the concentrating photovoltaic-thermoelectric hybrid system, but it also provides more exergy output. All of the results demonstrate the significant advantages of the new system: efficient, stable and secure.

Suggested Citation

  • Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
  • Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:560-573
    DOI: 10.1016/j.apenergy.2018.12.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918318385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.12.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Rakesh & Rosen, Marc A., 2011. "A critical review of photovoltaic–thermal solar collectors for air heating," Applied Energy, Elsevier, vol. 88(11), pages 3603-3614.
    2. Motiei, P. & Yaghoubi, M. & GoshtashbiRad, E. & Vadiee, A., 2018. "Two-dimensional unsteady state performance analysis of a hybrid photovoltaic-thermoelectric generator," Renewable Energy, Elsevier, vol. 119(C), pages 551-565.
    3. Li, Dianhong & Xuan, Yimin & Yin, Ershuai & Li, Qiang, 2018. "Conversion efficiency gain for concentrated triple-junction solar cell system through thermal management," Renewable Energy, Elsevier, vol. 126(C), pages 960-968.
    4. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    5. Kumar, Vinod & Shrivastava, R.L. & Untawale, S.P., 2015. "Fresnel lens: A promising alternative of reflectors in concentrated solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 376-390.
    6. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    7. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    8. Mahmoudinezhad, S. & Rezania, A. & Cotfas, D.T. & Cotfas, P.A. & Rosendahl, L.A., 2018. "Experimental and numerical investigation of hybrid concentrated photovoltaic – Thermoelectric module under low solar concentration," Energy, Elsevier, vol. 159(C), pages 1123-1131.
    9. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
    10. Chen, Wei-Hsin & Wang, Chien-Chang & Hung, Chen-I. & Yang, Chang-Chung & Juang, Rei-Cheng, 2014. "Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator," Energy, Elsevier, vol. 64(C), pages 287-297.
    11. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "One-day performance evaluation of photovoltaic-thermoelectric hybrid system," Energy, Elsevier, vol. 143(C), pages 337-346.
    12. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    13. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    14. Xu, Ning & Ji, Jie & Sun, Wei & Huang, Wenzhu & Li, Jing & Jin, Zhuling, 2016. "Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens," Applied Energy, Elsevier, vol. 168(C), pages 269-281.
    15. Al-Waeli, Ali H.A. & Sopian, K. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "Photovoltaic/Thermal (PV/T) systems: Status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 109-130.
    16. Modjinou, Mawufemo & Ji, Jie & Li, Jing & Yuan, Weiqi & Zhou, Fan, 2017. "A numerical and experimental study of micro-channel heat pipe solar photovoltaics thermal system," Applied Energy, Elsevier, vol. 206(C), pages 708-722.
    17. Zhang, Jin & Xuan, Yimin, 2017. "Performance improvement of a photovoltaic - Thermoelectric hybrid system subjecting to fluctuant solar radiation," Renewable Energy, Elsevier, vol. 113(C), pages 1551-1558.
    18. Kwan, Trevor Hocksun & Wu, Xiaofeng, 2016. "Power and mass optimization of the hybrid solar panel and thermoelectric generators," Applied Energy, Elsevier, vol. 165(C), pages 297-307.
    19. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    20. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    21. Li, Dianhong & Xuan, Yimin & Li, Qiang & Hong, Hui, 2017. "Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems," Energy, Elsevier, vol. 126(C), pages 343-351.
    22. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    2. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    3. Yin, Ershuai & Li, Qiang, 2023. "High-efficiency dynamic lossless coupling of a spectrum splitting photovoltaic-thermoelectric system," Energy, Elsevier, vol. 282(C).
    4. Yin, Ershuai & Li, Qiang, 2022. "Achieving extensive lossless coupling of photovoltaic and thermoelectric devices through parallel connection," Renewable Energy, Elsevier, vol. 193(C), pages 565-575.
    5. Zhang, Gaoming & Wei, Jinjia & Wang, Zexin & Xie, Huling & Xi, Yonghao & Khalid, Muhammad, 2019. "Investigation into effects of non-uniform irradiance and photovoltaic temperature on performances of photovoltaic/thermal systems coupled with truncated compound parabolic concentrators," Applied Energy, Elsevier, vol. 250(C), pages 245-256.
    6. Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    7. Montero, Francisco J. & Kumar, Ramesh & Lamba, Ravita & Escobar, Rodrigo A. & Vashishtha, Manish & Upadhyaya, Sushant & Guzmán, Amador M., 2022. "Hybrid photovoltaic-thermoelectric system: Economic feasibility analysis in the Atacama Desert, Chile," Energy, Elsevier, vol. 239(PB).
    8. Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
    9. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2020. "Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration," Renewable Energy, Elsevier, vol. 162(C), pages 1828-1841.
    10. Fang, Juan & Wu, Handong & Liu, Taixiu & Zheng, Zhimei & Lei, Jing & Liu, Qibin & Jin, Hongguang, 2020. "Thermodynamic evaluation of a concentrated photochemical–photovoltaic–thermochemical (CP-PV-T) system in the full-spectrum solar energy utilization," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    2. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    3. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2020. "Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration," Renewable Energy, Elsevier, vol. 162(C), pages 1828-1841.
    4. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    5. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    6. Yin, Ershuai & Li, Qiang, 2022. "Achieving extensive lossless coupling of photovoltaic and thermoelectric devices through parallel connection," Renewable Energy, Elsevier, vol. 193(C), pages 565-575.
    7. Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
    8. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    9. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    10. Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
    11. Mahmoudinezhad, S. & Cotfas, D.T. & Cotfas, P.A. & Skjølstrup, Enok J.H. & Pedersen, K. & Rosendahl, L. & Rezania, A., 2022. "Experimental investigation on spectrum beam splitting photovoltaic–thermoelectric generator under moderate solar concentrations," Energy, Elsevier, vol. 238(PC).
    12. Li, Guiqiang & Shittu, Samson & Ma, Xiaoli & Zhao, Xudong, 2019. "Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric," Energy, Elsevier, vol. 171(C), pages 599-610.
    13. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    14. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2019. "Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect," Renewable Energy, Elsevier, vol. 130(C), pages 930-942.
    15. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    16. Cui, Y.J. & Wang, B.L. & Wang, K.F. & Wang, G.G. & Zhang, A.B., 2022. "An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device," Renewable Energy, Elsevier, vol. 182(C), pages 923-933.
    17. Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
    18. Jo, Hyeonmin & Joo, Younghwan & Kim, Duckjong, 2023. "Thermal design of solar thermoelectric generator with phase change material for timely and efficient power generation," Energy, Elsevier, vol. 263(PA).
    19. Salari, Ali & Parcheforosh, Ali & Hakkaki-Fard, Ali & Amadeh, Ali, 2020. "A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module," Renewable Energy, Elsevier, vol. 153(C), pages 1261-1271.
    20. Yin, Ershuai & Li, Qiang, 2023. "High-efficiency dynamic lossless coupling of a spectrum splitting photovoltaic-thermoelectric system," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:236:y:2019:i:c:p:560-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.