IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v231y2018icp635-644.html
   My bibliography  Save this article

Computational performance analysis of overheating mitigation measures in parked vehicles

Author

Listed:
  • Soulios, V.
  • Loonen, R.C.G.M.
  • Metavitsiadis, V.
  • Hensen, J.L.M.

Abstract

Parked vehicles have the tendency to overheat quickly. This can lead to a negative impact on the thermal comfort of the driver and its passengers, as well as intensive use of air conditioning systems, and thus fuel consumption of the vehicle or, in the case of electric mobility, a reduced cruising range. In the search for effective measures to mitigate this effect, important guidance can be provided by the field of sustainable building design. On the one hand, inspiration can come from design strategies in terms of shapes and advanced cover materials, but this paper advocates that this can also pertain to the simulation-based design support tools that are used by building engineers. This paper first presents the results of a thermal soak test, and then uses this data to demonstrate the suitability of the building performance simulation tool EnergyPlus for predicting the thermal behavior of parked vehicles. This fit-for-purpose validated model is used to evaluate the performance of three overheating mitigation measures for two car models in two climates. The results show that spectrally selective glazing can reduce the cabin air temperature by 12.5 °C and when combined with solar reflective opaque surfaces, the reduction of cabin air temperature can reach 23.8 °C. Increased use of building performance simulation in the automotive domain can help to further optimize the overheating reduction potential of cars.

Suggested Citation

  • Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
  • Handle: RePEc:eee:appene:v:231:y:2018:i:c:p:635-644
    DOI: 10.1016/j.apenergy.2018.09.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918314600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    2. Pan, Hongye & Qi, Lingfei & Zhang, Xingtian & Zhang, Zutao & Salman, Waleed & Yuan, Yanping & Wang, Chunbai, 2017. "A portable renewable solar energy-powered cooling system based on wireless power transfer for a vehicle cabin," Applied Energy, Elsevier, vol. 195(C), pages 334-343.
    3. Levinson, Ronnen & Pan, Heng & Ban-Weiss, George & Rosado, Pablo & Paolini, Riccardo & Akbari, Hashem, 2011. "Potential benefits of solar reflective car shells: Cooler cabins, fuel savings and emission reductions," Applied Energy, Elsevier, vol. 88(12), pages 4343-4357.
    4. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    5. Loonen, R.C.G.M. & Trčka, M. & Cóstola, D. & Hensen, J.L.M., 2013. "Climate adaptive building shells: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 483-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoxiao Ding & Weirong Zhang & Zhen Yang & Jiajun Wang & Lingtao Liu & Dalong Gao & Dongdong Guo & Jianyin Xiong, 2022. "Effect of Open-Window Gaps on the Thermal Environment inside Vehicles Exposed to Solar Radiation," Energies, MDPI, vol. 15(17), pages 1-18, September.
    2. Zheming Tong & Hao Liu, 2020. "Modeling In-Vehicle VOCs Distribution from Cabin Interior Surfaces under Solar Radiation," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    3. Penning, Andrew K. & Weibel, Justin A., 2023. "Assessing the influence of glass properties on cabin solar heating and range of an electric vehicle using a comprehensive system model," Applied Energy, Elsevier, vol. 339(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    2. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    3. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    4. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    5. Miroslav Čekon & Richard Slávik, 2017. "A Non-Ventilated Solar Façade Concept Based on Selective and Transparent Insulation Material Integration: An Experimental Study," Energies, MDPI, vol. 10(6), pages 1-21, June.
    6. Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    7. López, Marlén & Rubio, Ramón & Martín, Santiago & Ben Croxford,, 2017. "How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 692-703.
    8. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    9. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    10. Vanaga, Ruta & Blumberga, Andra & Freimanis, Ritvars & Mols, Toms & Blumberga, Dagnija, 2018. "Solar facade module for nearly zero energy building," Energy, Elsevier, vol. 157(C), pages 1025-1034.
    11. Sigrid Adriaenssens & Landolf Rhode-Barbarigos & Axel Kilian & Olivier Baverel & Victor Charpentier & Matthew Horner & Denisa Buzatu, 2014. "Dialectic Form Finding of Passive and Adaptive Shading Enclosures," Energies, MDPI, vol. 7(8), pages 1-20, August.
    12. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    13. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    14. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    15. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    16. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    17. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    18. Mao, Ning & Pan, Dongmei & Li, Zhao & Xu, Yingjie & Song, Mengjie & Deng, Shiming, 2017. "A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort," Applied Energy, Elsevier, vol. 192(C), pages 213-221.
    19. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    20. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:231:y:2018:i:c:p:635-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.