IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v219y2018icp138-150.html
   My bibliography  Save this article

Reliable oxygen transfer in MgAl2O4 spinel through the reversible formation of oxygen vacancies by Cu2+/Fe3+ anchoring

Author

Listed:
  • Do, Jeong Yeon
  • Son, Namgyu
  • Park, No-Kuk
  • Kwak, Byeong Sub
  • Baek, Jeom-In
  • Ryu, Ho-Jung
  • Kang, Misook

Abstract

This study focused on CuxMg1-xFeyAl2-yO4 oxygen carriers for application in the chemical looping combustion of methane. CuxMg1-xFeyAl2-yO4 was fabricated by simultaneously substituting Mg2+ and Al3+ with Cu2+ and Fe3+ in the spinel structure of MgAl2O4. As a result, a great synergistic effect was observed: Cu0.75Mg0.25Fe1.5Al0.5O4 exhibited 7.85% oxygen transfer capacity in the CH4-CO2/air redox system. Methane and carbon monoxide were significantly adsorbed on the surface of the CuxMg1-xFeyAl2-yO4 particles. Cyclic voltammetry studies predicted the active lifetime of the oxygen carrier, which had not been reported until now. Cu0.75Mg0.25Fe1.5Al0.5O4 was expected to exhibit the greatest oxygen transfer capacity after 300 redox cycles and maintain an oxygen transfer efficiency of 92% until the 1000th redox cycle in the H2-N2/air redox system. This study concluded that the active metal species, containing Cu2+ and Fe3+ ions, were stably anchored in the spinel structure; this led to the reversible formation of oxygen vacancies in the spinel structure, resulting in an excellent oxygen transfer capacity that could be maintained for a long time.

Suggested Citation

  • Do, Jeong Yeon & Son, Namgyu & Park, No-Kuk & Kwak, Byeong Sub & Baek, Jeom-In & Ryu, Ho-Jung & Kang, Misook, 2018. "Reliable oxygen transfer in MgAl2O4 spinel through the reversible formation of oxygen vacancies by Cu2+/Fe3+ anchoring," Applied Energy, Elsevier, vol. 219(C), pages 138-150.
  • Handle: RePEc:eee:appene:v:219:y:2018:i:c:p:138-150
    DOI: 10.1016/j.apenergy.2018.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918303702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Yin & Mu, Daobin & Wu, Borong & Wang, Rui & Zhao, Zhikun & Wu, Feng, 2017. "Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles," Applied Energy, Elsevier, vol. 195(C), pages 586-599.
    2. Haider, S.K. & Azimi, G. & Duan, L. & Anthony, E.J. & Patchigolla, K. & Oakey, J.E. & Leion, H. & Mattisson, T. & Lyngfelt, A., 2016. "Enhancing properties of iron and manganese ores as oxygen carriers for chemical looping processes by dry impregnation," Applied Energy, Elsevier, vol. 163(C), pages 41-50.
    3. Wu, Jiafeng & Chen, Yaping & Zhu, Zilong & Mei, Xianzhi & Zhang, Shaobo & Zhang, Baohuai, 2017. "Performance simulation on NG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Applied Energy, Elsevier, vol. 196(C), pages 68-81.
    4. Chen, Yaping & Zhu, Zilong & Wu, Jiafeng & Yang, Shifan & Zhang, Baohuai, 2017. "A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Energy, Elsevier, vol. 120(C), pages 128-137.
    5. Bhavsar, Saurabh & Isenberg, Natalie & More, Amey & Veser, Götz, 2016. "Lanthana-doped ceria as active support for oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 168(C), pages 236-247.
    6. Lu, Xuao & Rahman, Ryad A. & Lu, Dennis Y. & Ridha, Firas N. & Duchesne, Marc A. & Tan, Yewen & Hughes, Robin W., 2016. "Pressurized chemical looping combustion with CO: Reduction reactivity and oxygen-transport capacity of ilmenite ore," Applied Energy, Elsevier, vol. 184(C), pages 132-139.
    7. Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.
    8. Sun, Zhenkun & Lu, Dennis Y. & Ridha, Firas N. & Hughes, Robin W. & Filippou, Dimitrios, 2017. "Enhanced performance of ilmenite modified by CeO2, ZrO2, NiO, and Mn2O3 as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 195(C), pages 303-315.
    9. Schnellmann, Matthias A. & Donat, Felix & Scott, Stuart A. & Williams, Gareth & Dennis, John S., 2018. "The effect of different particle residence time distributions on the chemical looping combustion process," Applied Energy, Elsevier, vol. 216(C), pages 358-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
    2. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana, Shazadi & Sun, Zhenkun & Mehrani, Poupak & Hughes, Robin & Macchi, Arturo, 2019. "Ilmenite oxidation kinetics for pressurized chemical looping combustion of natural gas," Applied Energy, Elsevier, vol. 238(C), pages 747-759.
    2. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    3. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    4. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    5. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    6. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    7. Nakano, Anna & Nakano, Jinichiro & Bennett, James, 2020. "Real-time high temperature investigations of an individual natural hematite ore particle for chemical looping oxygen exchange," Applied Energy, Elsevier, vol. 268(C).
    8. Khakpoor, Nima & Mostafavi, Ehsan & Mahinpey, Nader & De la Hoz Siegler, Hector, 2019. "Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion," Energy, Elsevier, vol. 169(C), pages 329-337.
    9. Barsali, Stefano & Ciambellotti, Alessio & Giglioli, Romano & Paganucci, Fabrizio & Pasini, Gianluca, 2018. "Hybrid power plant for energy storage and peak shaving by liquefied oxygen and natural gas," Applied Energy, Elsevier, vol. 228(C), pages 33-41.
    10. Wu, Jiafeng & Chen, Yaping & Zhu, Zilong & Zheng, Shuxing, 2020. "Analysis on full CO2 capture schemes in NG/O2 combustion gas and steam mixture cycle (GSMC)," Energy, Elsevier, vol. 191(C).
    11. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    12. Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
    13. Yaumi, A.L. & Bakar, M.Z. Abu & Hameed, B.H., 2017. "Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed," Energy, Elsevier, vol. 138(C), pages 776-784.
    14. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
    15. Qiu, Yu & Zhang, Shuai & Cui, Dongxu & Li, Min & Zeng, Jimin & Zeng, Dewang & Xiao, Rui, 2019. "Enhanced hydrogen production performance at intermediate temperatures through the synergistic effects of binary oxygen carriers," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Bartocci, Pietro & Abad, Alberto & Mattisson, Tobias & Cabello, Arturo & Loscertales, Margarita de las Obras & Negredo, Teresa Mendiara & Zampilli, Mauro & Taiana, Andrea & Serra, Angela & Arauzo, Inm, 2022. "Bioenergy with Carbon Capture and Storage (BECCS) developed by coupling a Pressurised Chemical Looping combustor with a turbo expander: How to optimize plant efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    17. Pietro Bartocci & Alberto Abad & Aldo Bischi & Lu Wang & Arturo Cabello & Margarita de Las Obras Loscertales & Mauro Zampilli & Haiping Yang & Francesco Fantozzi, 2023. "Dimensioning Air Reactor and Fuel Reactor of a Pressurized Chemical Looping Combustor to Be Coupled to a Gas Turbine: Part 1, the Air Reactor," Energies, MDPI, vol. 16(5), pages 1-20, February.
    18. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    19. Jo, Seung Won & Im, Younghwan & Do, Jeong Yeon & Park, No-Kuk & Lee, Tae Jin & Lee, Sang Tae & Cha, Moon Soon & Jeon, Min-Kyu & Kang, Misook, 2017. "Synergies between Ni, Co, and Mn ions in trimetallic Ni1-xCoxMnO4 catalysts for effective hydrogen production from propane steam reforming," Renewable Energy, Elsevier, vol. 113(C), pages 248-256.
    20. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:219:y:2018:i:c:p:138-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.