IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v195y2017icp890-904.html
   My bibliography  Save this article

Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China

Author

Listed:
  • Cui, Ying
  • Yan, Da
  • Hong, Tianzhen
  • Xiao, Chan
  • Luo, Xuan
  • Zhang, Qi

Abstract

Weather has significant impacts on the thermal environment and energy use in buildings. Thus, accurate weather data are crucial for building performance evaluations. Traditionally, typical year data inputs are used to represent long-term weather data. However, there is no guarantee that a single year represents the changing climate well. In this study, the long-term representation of a typical year was assessed by comparing it to a 55-year actual weather data set. To investigate the weather impact on building energy use, 559 simulation runs of a prototype office building were performed for 10 large cities covering all climate zones in China. The analysis results demonstrated that the weather data varied significantly from year to year. Hence, a typical year cannot reflect the variation range of weather fluctuations. Typical year simulations overestimated or underestimated the energy use and peak load in many cases. With the increase in computational power of personal computers, it is feasible and essential to adopt multiyear simulations for full assessments of long-term building performance, as this will improve decision-making by allowing for the full consideration of variations in building energy use.

Suggested Citation

  • Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
  • Handle: RePEc:eee:appene:v:195:y:2017:i:c:p:890-904
    DOI: 10.1016/j.apenergy.2017.03.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917303549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2003. "Generation of typical meteorological year (TMY-2) for Nicosia, Cyprus," Renewable Energy, Elsevier, vol. 28(15), pages 2317-2334.
    2. Pusat, Saban & Ekmekçi, İsmail & Akkoyunlu, Mustafa Tahir, 2015. "Generation of typical meteorological year for different climates of Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 144-151.
    3. Hong, Tianzhen & Chang, Wen-Kuei & Lin, Hung-Wen, 2013. "A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data," Applied Energy, Elsevier, vol. 111(C), pages 333-350.
    4. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    5. Ohunakin, Olayinka S. & Adaramola, Muyiwa S. & Oyewola, Olanrewaju M. & Fagbenle, Richard O., 2013. "Generation of a typical meteorological year for north–east, Nigeria," Applied Energy, Elsevier, vol. 112(C), pages 152-159.
    6. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    7. Radhi, Hassan, 2009. "A comparison of the accuracy of building energy analysis in Bahrain using data from different weather periods," Renewable Energy, Elsevier, vol. 34(3), pages 869-875.
    8. Said, S.A.M. & Kadry, H.M., 1994. "Generation of representative weather--Year data for Saudi Arabia," Applied Energy, Elsevier, vol. 48(2), pages 131-136.
    9. Janjai, S. & Deeyai, P., 2009. "Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment," Applied Energy, Elsevier, vol. 86(4), pages 528-537, April.
    10. Nik, Vahid M., 2016. "Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)," Applied Energy, Elsevier, vol. 177(C), pages 204-226.
    11. Lam, Tony N.T. & Wan, Kevin K.W. & Wong, S.L. & Lam, Joseph C., 2010. "Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong," Applied Energy, Elsevier, vol. 87(7), pages 2321-2327, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Can & Wang, Zhen & Cai, Bofeng & Peng, Sha & Wang, Yang & Xu, Chengdong, 2021. "Evolution-based CO2 emission baseline scenarios of Chinese cities in 2025," Applied Energy, Elsevier, vol. 281(C).
    2. Guo, Siyue & Yan, Da & Hong, Tianzhen & Xiao, Chan & Cui, Ying, 2019. "A novel approach for selecting typical hot-year (THY) weather data," Applied Energy, Elsevier, vol. 242(C), pages 1634-1648.
    3. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    4. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
    5. Michele Libralato & Alessandra De Angelis & Giulia Tornello & Onorio Saro & Paola D’Agaro & Giovanni Cortella, 2021. "Evaluation of Multiyear Weather Data Effects on Hygrothermal Building Energy Simulations Using WUFI Plus," Energies, MDPI, vol. 14(21), pages 1-15, November.
    6. Yuan, Jihui & Huang, Pei & Chai, Jiale, 2022. "Development of a calibrated typical meteorological year weather file in system design of zero-energy building for performance improvements," Energy, Elsevier, vol. 259(C).
    7. Francesco Mancini & Gianluigi Lo Basso, 2020. "How Climate Change Affects the Building Energy Consumptions Due to Cooling, Heating, and Electricity Demands of Italian Residential Sector," Energies, MDPI, vol. 13(2), pages 1-24, January.
    8. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Walsh, Angélica & Cóstola, Daniel & Labaki, Lucila Chebel, 2018. "Performance-based validation of climatic zoning for building energy efficiency applications," Applied Energy, Elsevier, vol. 212(C), pages 416-427.
    10. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    11. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    12. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    13. Evola, Gianpiero & Costanzo, Vincenzo & Infantone, Marco & Marletta, Luigi, 2021. "Typical-year and multi-year building energy simulation approaches: A critical comparison," Energy, Elsevier, vol. 219(C).
    14. Chen Xu & Yu Li & Xueting Jin & Liang Yuan & Hao Cheng, 2017. "A Real-Time Energy Consumption Simulation and Comparison of Buildings in Different Construction Years in the Olympic Central Area in Beijing," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    15. Shi, Luyang & Luo, Zhiwen & Matthews, Wendy & Wang, Zixuan & Li, Yuguo & Liu, Jing, 2019. "Impacts of urban microclimate on summertime sensible and latent energy demand for cooling in residential buildings of Hong Kong," Energy, Elsevier, vol. 189(C).
    16. Li, Chong & Zhou, Dequn & Zheng, Yuan, 2018. "Techno-economic comparative study of grid-connected PV power systems in five climate zones, China," Energy, Elsevier, vol. 165(PB), pages 1352-1369.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluwaseu Kilanko & Sunday O Oyedepo & Joseph O Dirisu & Richard O Leramo & Philip Babalola & Abraham K Aworinde & Mfon Udo & Alexander M Okonkwo & Marvelous I Akomolafe, 2023. "Typical meteorological year data analysis for optimal usage of energy systems at six selected locations in Nigeria," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 637-658.
    2. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    3. Haixiang Zang & Miaomiao Wang & Jing Huang & Zhinong Wei & Guoqiang Sun, 2016. "A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China," Energies, MDPI, vol. 9(12), pages 1-19, December.
    4. Huang, Kuo-Tsang, 2020. "Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application," Renewable Energy, Elsevier, vol. 157(C), pages 1102-1115.
    5. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    6. Fan, Xinying, 2022. "A method for the generation of typical meteorological year data using ensemble empirical mode decomposition for different climates of China and performance comparison analysis," Energy, Elsevier, vol. 240(C).
    7. Burleyson, Casey D. & Voisin, Nathalie & Taylor, Z. Todd & Xie, Yulong & Kraucunas, Ian, 2018. "Simulated building energy demand biases resulting from the use of representative weather stations," Applied Energy, Elsevier, vol. 209(C), pages 516-528.
    8. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    9. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    10. Pusat, Saban & Ekmekçi, İsmail & Akkoyunlu, Mustafa Tahir, 2015. "Generation of typical meteorological year for different climates of Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 144-151.
    11. Jiang, Yingni, 2010. "Generation of typical meteorological year for different climates of China," Energy, Elsevier, vol. 35(5), pages 1946-1953.
    12. Nik, Vahid M., 2016. "Making energy simulation easier for future climate – Synthesizing typical and extreme weather data sets out of regional climate models (RCMs)," Applied Energy, Elsevier, vol. 177(C), pages 204-226.
    13. Mauree, Dasaraden & Naboni, Emanuele & Coccolo, Silvia & Perera, A.T.D. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 733-746.
    14. Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
    15. Abreu, Edgar F.M. & Canhoto, Paulo & Prior, Victor & Melicio, R., 2018. "Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements," Renewable Energy, Elsevier, vol. 127(C), pages 398-411.
    16. Sun, Jingting & Li, Zhengrong & Xiao, Fu & Xiao, Jianzhuang, 2020. "Generation of typical meteorological year for integrated climate based daylight modeling and building energy simulation," Renewable Energy, Elsevier, vol. 160(C), pages 721-729.
    17. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    19. García, Ignacio & Torres, José Luis, 2018. "Temporal downscaling of test reference years: Effects on the long-term evaluation of photovoltaic systems," Renewable Energy, Elsevier, vol. 122(C), pages 392-405.
    20. Chan, A.L.S., 2016. "Generation of typical meteorological years using genetic algorithm for different energy systems," Renewable Energy, Elsevier, vol. 90(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:195:y:2017:i:c:p:890-904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.