IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp774-783.html
   My bibliography  Save this article

Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling

Author

Listed:
  • Chen, Shaoqing
  • Chen, Bin

Abstract

Urban metabolism is a useful framework for characterizing human manipulation of energy and material flows in cities, but little attention has been paid to interactions among different flows. In this study, we examine the coupling of energy and carbon flows associated with cities. To do this, a time-series dataset of carbon and energy flows with 66 urban samples of various geographic and economic conditions is developed, dating back to 1865. We assess correlation between energy consumption and carbon emissions with consideration of urban size and population density. By focusing on Beijing and Issaquah as two case cities, we model the coupling of energy and carbon metabolism at urban scale from a network perspective. The energy-carbon nexus is evaluated for its impact on carbon intensities associated with economic sectors. We find energy-use and carbon emissions of 1865–2014 are strongly coupled, for both large and small cities of varying population densities. A closer look into the impact of the energy-carbon nexus on carbon intensities is important for emissions control. We suggest that more comprehensive and up-to-date monitoring of the nexus in urban energy and carbon flows be initiated immediately in order to search for ideal options of low-carbon pathways for cities at global scale.

Suggested Citation

  • Chen, Shaoqing & Chen, Bin, 2017. "Coupling of carbon and energy flows in cities: A meta-analysis and nexus modelling," Applied Energy, Elsevier, vol. 194(C), pages 774-783.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:774-783
    DOI: 10.1016/j.apenergy.2016.10.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    2. Zhou, D.Q. & Wang, Qunwei & Su, B. & Zhou, P. & Yao, L.X., 2016. "Industrial energy conservation and emission reduction performance in China: A city-level nonparametric analysis," Applied Energy, Elsevier, vol. 166(C), pages 201-209.
    3. Sampaio, Henrique César & Dias, Rubens Alves & Balestieri, José Antônio Perrella, 2013. "Sustainable urban energy planning: The case study of a tropical city," Applied Energy, Elsevier, vol. 104(C), pages 924-935.
    4. Michail Fragkias & José Lobo & Deborah Strumsky & Karen C Seto, 2013. "Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    5. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    6. Francesch-Huidobro, Maria, 2016. "Climate change and energy policies in Shanghai: A multilevel governance perspective," Applied Energy, Elsevier, vol. 164(C), pages 45-56.
    7. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    8. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    9. Matthew Gandy, 2004. "Rethinking urban metabolism: water, space and the modern city," City, Taylor & Francis Journals, vol. 8(3), pages 363-379, December.
    10. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    11. Parshall, Lily & Gurney, Kevin & Hammer, Stephen A. & Mendoza, Daniel & Zhou, Yuyu & Geethakumar, Sarath, 2010. "Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States," Energy Policy, Elsevier, vol. 38(9), pages 4765-4782, September.
    12. Fath, Brian D. & Scharler, Ursula M. & Ulanowicz, Robert E. & Hannon, Bruce, 2007. "Ecological network analysis: network construction," Ecological Modelling, Elsevier, vol. 208(1), pages 49-55.
    13. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    14. Yu, Dongwei & Tan, Hongwei, 2016. "Application of ‘potential carbon’ in energy planning with carbon emission constraints," Applied Energy, Elsevier, vol. 169(C), pages 363-369.
    15. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    16. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    17. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    18. Venkatesh, G. & Chan, Arthur & Brattebø, Helge, 2014. "Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four city case studies and the relevant influencing factors," Energy, Elsevier, vol. 75(C), pages 153-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shaoqing & Xu, Bing & Chen, Bin, 2018. "Unfolding the interplay between carbon flows and socioeconomic development in a city: What can network analysis offer?," Applied Energy, Elsevier, vol. 211(C), pages 403-412.
    2. Yanli Ji & Jie Xue, 2022. "Decoupling Effect of County Carbon Emissions and Economic Growth in China: Empirical Evidence from Jiangsu Province," IJERPH, MDPI, vol. 19(6), pages 1-22, March.
    3. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    4. Ming-Che Hu & Chihhao Fan & Tailin Huang & Chi-Fang Wang & Yu-Hui Chen, 2018. "Urban Metabolic Analysis of a Food-Water-Energy System for Sustainable Resources Management," IJERPH, MDPI, vol. 16(1), pages 1-11, December.
    5. Gómez-Gardars, Emanuel Birkir & Rodríguez-Macias, Antonio & Tena-García, Jorge Luis & Fuentes-Cortés, Luis Fabián, 2022. "Assessment of the water–energy–carbon nexus in energy systems: A multi-objective approach," Applied Energy, Elsevier, vol. 305(C).
    6. Xiao, Zhengyan & Yao, Meiqin & Tang, Xiaotong & Sun, Luxi, 2019. "Identifying critical supply chains: An input-output analysis for Food-Energy-Water Nexus in China," Ecological Modelling, Elsevier, vol. 392(C), pages 31-37.
    7. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2020. "A blockchain based peer-to-peer trading framework integrating energy and carbon markets," Applied Energy, Elsevier, vol. 279(C).
    8. Weiwei Mo & Darline Balen & Marianna Moura & Kevin H. Gardner, 2018. "A Regional Analysis of the Life Cycle Environmental and Economic Tradeoffs of Different Economic Growth Paths," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    9. Chen, Shaoqing & Zhu, Feiyao, 2019. "Unveiling key drivers of urban embodied and controlled carbon footprints," Applied Energy, Elsevier, vol. 235(C), pages 835-845.
    10. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    11. Soprani, Stefano & Marongiu, Fabrizio & Christensen, Ludvig & Alm, Ole & Petersen, Kenni Dinesen & Ulrich, Thomas & Engelbrecht, Kurt, 2019. "Design and testing of a horizontal rock bed for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Liu, Lirong & Huang, Guohe & Baetz, Brian & Huang, Charley Z. & Zhang, Kaiqiang, 2019. "Integrated GHG emissions and emission relationships analysis through a disaggregated ecologically-extended input-output model; A case study for Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 97-109.
    13. Ziv, Guy & Watson, Elizabeth & Young, Dylan & Howard, David C. & Larcom, Shaun T. & Tanentzap, Andrew J., 2018. "The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach," Applied Energy, Elsevier, vol. 210(C), pages 487-498.
    14. Chen, Han & Chen, Wenying, 2019. "Potential impact of shifting coal to gas and electricity for building sectors in 28 major northern cities of China," Applied Energy, Elsevier, vol. 236(C), pages 1049-1061.
    15. Guo, Shan & Zheng, Shupeng & Hu, Yunhao & Hong, Jingke & Wu, Xiaofang & Tang, Miaohan, 2019. "Embodied energy use in the global construction industry," Applied Energy, Elsevier, vol. 256(C).
    16. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    2. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    3. Chen, Shaoqing & Zhu, Feiyao, 2019. "Unveiling key drivers of urban embodied and controlled carbon footprints," Applied Energy, Elsevier, vol. 235(C), pages 835-845.
    4. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.
    5. Chao Liu & Sen Huang & Peng Xu & Zhong-ren Peng, 2018. "Exploring an integrated urban carbon dioxide (CO2) emission model and mitigation plan for new cities," Environment and Planning B, , vol. 45(5), pages 821-841, September.
    6. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    7. Wang, Saige & Chen, Bin, 2016. "Energy–water nexus of urban agglomeration based on multiregional input–output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region," Applied Energy, Elsevier, vol. 178(C), pages 773-783.
    8. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    9. Duan, Cuncun & Chen, Bin, 2017. "Energy–water nexus of international energy trade of China," Applied Energy, Elsevier, vol. 194(C), pages 725-734.
    10. Chen, Shaoqing & Zhu, Feiyao & Long, Huihui & Yang, Jin, 2019. "Energy footprint controlled by urban demands: How much does supply chain complexity contribute?," Energy, Elsevier, vol. 183(C), pages 561-572.
    11. Yinwen Huang & Dechun Huang, 2023. "Decoupling Economic Growth from Embodied Water–Energy–Food Consumption Based on a Modified MRIO Model: A Case Study of the Yangtze River Delta Region in China," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    12. Meng, Fanxin & Liu, Gengyuan & Liang, Sai & Su, Meirong & Yang, Zhifeng, 2019. "Critical review of the energy-water-carbon nexus in cities," Energy, Elsevier, vol. 171(C), pages 1017-1032.
    13. Chen, Shaoqing & Xu, Bing & Chen, Bin, 2018. "Unfolding the interplay between carbon flows and socioeconomic development in a city: What can network analysis offer?," Applied Energy, Elsevier, vol. 211(C), pages 403-412.
    14. Chen, Shaoqing & Chen, Bin, 2016. "Urban energy–water nexus: A network perspective," Applied Energy, Elsevier, vol. 184(C), pages 905-914.
    15. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    16. David Pérez-González & Gian Carlo Delgado-Ramos & Lilia Cedillo Ramírez & Rosalva Loreto López & María Elena Ramos Cassellis & José Víctor Rosendo Tamariz Flores & Ricardo Darío Peña Moreno, 2023. "Puebla City Water Supply from the Perspective of Urban Water Metabolism," Sustainability, MDPI, vol. 15(19), pages 1-34, October.
    17. De Stercke, Simon & Mijic, Ana & Buytaert, Wouter & Chaturvedi, Vaibhav, 2018. "Modelling the dynamic interactions between London’s water and energy systems from an end-use perspective," Applied Energy, Elsevier, vol. 230(C), pages 615-626.
    18. Timothy Moss & Frank Hüesker, 2019. "Politicised nexus thinking in practice: Integrating urban wastewater utilities into regional energy markets," Urban Studies, Urban Studies Journal Limited, vol. 56(11), pages 2225-2241, August.
    19. Liu, Xiaoping & Ou, Jinpei & Chen, Yimin & Wang, Shaojian & Li, Xia & Jiao, Limin & Liu, Yaolin, 2019. "Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures," Applied Energy, Elsevier, vol. 238(C), pages 1163-1178.
    20. Panyam, Varuneswara & Huang, Hao & Davis, Katherine & Layton, Astrid, 2019. "Bio-inspired design for robust power grid networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:774-783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.