IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v194y2017icp617-625.html
   My bibliography  Save this article

Design of closed-loop control system for a bidirectional full bridge DC/DC converter

Author

Listed:
  • Zhifu, Wang
  • Yupu, Wang
  • Yinan, Rong

Abstract

Bi-directional full bridge DC/DC converter is a nonlinear time-varying system. To design the closed-loop control system, it needed to be transformed into a continuum mathematical model. This paper proposed a modeling method by using state space average method and the small signal analysis method to build the model. Firstly, a nonlinear mathematical model of the converter was established by using the state space average method, and on this basis, using small signal analysis method to convert the nonlinear mathematical model to a continuum mathematical model. Then the stability criterion of the system is proposed and the PID parameters were adjusted by combining with the automatic control theory. Furthermore the digital closed-loop network of each working mode is designed. Finally by simulation and a series prototype experiments, the results verified the feasibility of closed-loop control system and the DC/DC converter.

Suggested Citation

  • Zhifu, Wang & Yupu, Wang & Yinan, Rong, 2017. "Design of closed-loop control system for a bidirectional full bridge DC/DC converter," Applied Energy, Elsevier, vol. 194(C), pages 617-625.
  • Handle: RePEc:eee:appene:v:194:y:2017:i:c:p:617-625
    DOI: 10.1016/j.apenergy.2016.11.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317445
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trujillo, C.L. & Velasco, D. & Figueres, E. & Garcerá, G. & Ortega, R., 2011. "Modeling and control of a push-pull converter for photovoltaic microinverters operating in island mode," Applied Energy, Elsevier, vol. 88(8), pages 2824-2834, August.
    2. Trujillo, C.L. & Velasco, D. & Figueres, E. & Garcerá, G., 2010. "Analysis of active islanding detection methods for grid-connected microinverters for renewable energy processing," Applied Energy, Elsevier, vol. 87(11), pages 3591-3605, November.
    3. Kalantar, M. & Mousavi G., S.M., 2010. "Posicast control within feedback structure for a DC-DC single ended primary inductor converter in renewable energy applications," Applied Energy, Elsevier, vol. 87(10), pages 3110-3114, October.
    4. Durán, E. & Andújar, J.M. & Segura, F. & Barragán, A.J., 2011. "A high-flexibility DC load for fuel cell and solar arrays power sources based on DC-DC converters," Applied Energy, Elsevier, vol. 88(5), pages 1690-1702, May.
    5. Eccher, M. & Salemi, A. & Turrini, S. & Brusa, R.S., 2015. "Measurements of power transfer efficiency in CPV cell-array models using individual DC–DC converters," Applied Energy, Elsevier, vol. 142(C), pages 396-406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Aharon, Ilan & Shmilovitz, Doron & Kuperman, Alon, 2017. "Multimode power processing interface for fuel cell range extender in battery powered vehicle," Applied Energy, Elsevier, vol. 204(C), pages 572-581.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yilmaz, Saban & Dincer, Furkan, 2017. "Impact of inverter capacity on the performance in large-scale photovoltaic power plants – A case study for Gainesville, Florida," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 15-23.
    2. Saravanan, S. & Ramesh Babu, N., 2017. "Analysis and implementation of high step-up DC-DC converter for PV based grid application," Applied Energy, Elsevier, vol. 190(C), pages 64-72.
    3. Çelik, Özgür & Teke, Ahmet & Tan, Adnan, 2018. "Overview of micro-inverters as a challenging technology in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3191-3206.
    4. Wang, Chun & Xiong, Rui & He, Hongwen & Ding, Xiaofeng & Shen, Weixiang, 2016. "Efficiency analysis of a bidirectional DC/DC converter in a hybrid energy storage system for plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 612-622.
    5. Bayrak, Gökay & Kabalci, Ersan, 2016. "Implementation of a new remote islanding detection method for wind–solar hybrid power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1-15.
    6. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    7. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    8. Sivakumar, S. & Sathik, M. Jagabar & Manoj, P.S. & Sundararajan, G., 2016. "An assessment on performance of DC–DC converters for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1475-1485.
    9. Indu Rani, B. & Srikanth, M. & Saravana Ilango, G. & Nagamani, C., 2013. "An active islanding detection technique for current controlled inverter," Renewable Energy, Elsevier, vol. 51(C), pages 189-196.
    10. Francisca Segura & José Manuel Andújar, 2015. "Modular PEM Fuel Cell SCADA & Simulator System," Resources, MDPI, vol. 4(3), pages 1-21, September.
    11. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    12. Aharon, Ilan & Shmilovitz, Doron & Kuperman, Alon, 2017. "Multimode power processing interface for fuel cell range extender in battery powered vehicle," Applied Energy, Elsevier, vol. 204(C), pages 572-581.
    13. Kong, Xiangrui & Xu, Xiaoyuan & Yan, Zheng & Chen, Sijie & Yang, Huoming & Han, Dong, 2018. "Deep learning hybrid method for islanding detection in distributed generation," Applied Energy, Elsevier, vol. 210(C), pages 776-785.
    14. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    15. Fan, Dongming & Ren, Yi & Feng, Qiang & Liu, Yiliu & Wang, Zili & Lin, Jing, 2021. "Restoration of smart grids: Current status, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Turrini, Sebastiano & Bettonte, Marco & Eccher, Massimo & Grigiante, Maurizio & Miotello, Antonio & Brusa, Roberto S., 2018. "An innovative small-scale prototype plant integrating a solar dish concentrator with a molten salt storage system," Renewable Energy, Elsevier, vol. 123(C), pages 150-161.
    17. Li, Canbing & Cao, Chi & Cao, Yijia & Kuang, Yonghong & Zeng, Long & Fang, Baling, 2014. "A review of islanding detection methods for microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 211-220.
    18. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    19. Rosa Anna Mastromauro, 2020. "Grid Synchronization and Islanding Detection Methods for Single-Stage Photovoltaic Systems," Energies, MDPI, vol. 13(13), pages 1-25, July.
    20. M. Karthikeyan & R. Elavarasu & P. Ramesh & C. Bharatiraja & P. Sanjeevikumar & Lucian Mihet-Popa & Massimo Mitolo, 2020. "A Hybridization of Cuk and Boost Converter Using Single Switch with Higher Voltage Gain Compatibility," Energies, MDPI, vol. 13(9), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:194:y:2017:i:c:p:617-625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.