IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v192y2017icp59-70.html
   My bibliography  Save this article

Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode

Author

Listed:
  • Jia, Guorui
  • Wang, Hu
  • Tong, Laihui
  • Wang, Xiaofeng
  • Zheng, Zunqing
  • Yao, Mingfa

Abstract

GCI (gasoline compression ignition), as one of the competitive low temperature combustion modes, has great potential to meet the increasingly stringent regulations. In order to understand the combustion mechanism of GCI through chemical kinetics, gasoline surrogates become the focus of research to reproduce the combustion and emission characteristics of real gasoline fuel. In this work, three gasoline surrogates have been compared with commercial RON92 gasoline on combustion and emission characteristics at different loads and EGR (exhaust gas recirculation) conditions. The results show that PRF (primary reference fuel) is not suitable to reproduce the combustion characteristics of RON92 gasoline. The soot emission of TRF (toluene reference fuel) is higher than that of gasoline at high load and high EGR (>20%) conditions. The THC (total hydrocarbons) of TRFDIB (toluene reference fuel with diisobutylene) is slightly higher than that of gasoline at medium and low loads. However, TRFDIB has the potential to better reproduce the NOx and soot emissions of RON92 gasoline under other conditions. The combustion characteristics can be well reproduced by TRFDIB within the whole range of test conditions. The chemical kinetics analysis results show that EGR (mainly CO2 and H2O) has inhibiting effect on the fuel with NTC (negative temperature coefficient) behavior and that the components with low NTC promote the ignition process with the increase of EGR comparatively. The addition of toluene slows down the conversion rate of iso-octane in TRF while the addition of DIB accelerates the surrogates’ oxidation rates, since DIB can produce more OH radical and CH2O to speed up the combustion process at low temperature.

Suggested Citation

  • Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
  • Handle: RePEc:eee:appene:v:192:y:2017:i:c:p:59-70
    DOI: 10.1016/j.apenergy.2017.01.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Desantes, J.M. & García-Oliver, J.M. & Vera-Tudela, W. & López-Pintor, D. & Schneider, B. & Boulouchos, K., 2016. "Study of the auto-ignition phenomenon of PRFs under HCCI conditions in a RCEM by means of spectroscopy," Applied Energy, Elsevier, vol. 179(C), pages 389-400.
    2. Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.
    3. Bissoli, M. & Frassoldati, A. & Cuoci, A. & Ranzi, E. & Mehl, M. & Faravelli, T., 2016. "A new predictive multi-zone model for HCCI engine combustion," Applied Energy, Elsevier, vol. 178(C), pages 826-843.
    4. Badra, Jihad & Viollet, Yoann & Elwardany, Ahmed & Im, Hong G. & Chang, Junseok, 2016. "Physical and chemical effects of low octane gasoline fuels on compression ignition combustion," Applied Energy, Elsevier, vol. 183(C), pages 1197-1208.
    5. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    6. Sun, Hongjie & Yan, Feng & Yu, Hao & Su, W.H., 2015. "Analysis of exergy loss of gasoline surrogate combustion process based on detailed chemical kinetics," Applied Energy, Elsevier, vol. 152(C), pages 11-19.
    7. Jia, Ming & Xie, Maozhao & Wang, Tianyou & Peng, Zhijun, 2011. "The effect of injection timing and intake valve close timing on performance and emissions of diesel PCCI engine with a full engine cycle CFD simulation," Applied Energy, Elsevier, vol. 88(9), pages 2967-2975.
    8. Storch, Michael & Koegl, Matthias & Altenhoff, Michael & Will, Stefan & Zigan, Lars, 2016. "Investigation of soot formation of spark-ignited ethanol-blended gasoline sprays with single- and multi-component base fuels," Applied Energy, Elsevier, vol. 181(C), pages 278-287.
    9. Gong, Cheng & Jangi, Mehdi & Bai, Xue-Song, 2014. "Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel," Applied Energy, Elsevier, vol. 136(C), pages 373-381.
    10. Mack, J. Hunter & Schuler, Daniel & Butt, Ryan H. & Dibble, Robert W., 2016. "Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 165(C), pages 612-626.
    11. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Toluene destruction in thermal stage of Claus reactor with oxygen enriched air," Applied Energy, Elsevier, vol. 115(C), pages 1-8.
    12. Nazemi, M. & Shahbakhti, M., 2016. "Modeling and analysis of fuel injection parameters for combustion and performance of an RCCI engine," Applied Energy, Elsevier, vol. 165(C), pages 135-150.
    13. Wang, Yifeng & Yao, Mingfa & Li, Tie & Zhang, Weijing & Zheng, Zunqing, 2016. "A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads," Applied Energy, Elsevier, vol. 175(C), pages 389-402.
    14. Zheng, Zhaolei & Lv, Zhumei, 2015. "A new skeletal chemical kinetic model of gasoline surrogate fuel with nitric oxide in HCCI combustion," Applied Energy, Elsevier, vol. 147(C), pages 59-66.
    15. Chen, Yulin & Dong, Guangyu & Mack, J. Hunter & Butt, Ryan H. & Chen, Jyh-Yuan & Dibble, Robert W., 2016. "Cyclic variations and prior-cycle effects of ion current sensing in an HCCI engine: A time-series analysis," Applied Energy, Elsevier, vol. 168(C), pages 628-635.
    16. Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
    17. Wang, Buyu & Wang, Zhi & Shuai, Shijin & Xu, Hongming, 2015. "Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) mode fuelled with different low octane gasolines," Applied Energy, Elsevier, vol. 160(C), pages 769-776.
    18. Zhang, Wei & Chen, Zhaohui & Li, Weidong & Shu, Gequn & Xu, Biao & Shen, Yinggang, 2013. "Influence of EGR and oxygen-enriched air on diesel engine NO–Smoke emission and combustion characteristic," Applied Energy, Elsevier, vol. 107(C), pages 304-314.
    19. Li, J. & Yang, W.M. & An, H. & Chou, S.K., 2015. "Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 777-783.
    20. Ma, Shuaiying & Zheng, Zunqing & Liu, Haifeng & Zhang, Quanchang & Yao, Mingfa, 2013. "Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion," Applied Energy, Elsevier, vol. 109(C), pages 202-212.
    21. Yang, Binbin & Yao, Mingfa & Cheng, Wai K. & Li, Yu & Zheng, Zunqing & Li, Shanju, 2014. "Experimental and numerical study on different dual-fuel combustion modes fuelled with gasoline and diesel," Applied Energy, Elsevier, vol. 113(C), pages 722-733.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raza, Mohsin & Wang, Hu & Yao, Mingfa, 2019. "Numerical investigation of reactivity controlled compression ignition (RCCI) using different multi-component surrogate combinations of diesel and gasoline," Applied Energy, Elsevier, vol. 242(C), pages 462-479.
    2. Novella, Ricardo & García, Antonio & Gomez-Soriano, Josep & Fogué-Robles, Álvaro, 2023. "Exploring dilution potential for full load operation of medium duty hydrogen engine for the transport sector," Applied Energy, Elsevier, vol. 349(C).
    3. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
    2. Raza, Mohsin & Wang, Hu & Yao, Mingfa, 2019. "Numerical investigation of reactivity controlled compression ignition (RCCI) using different multi-component surrogate combinations of diesel and gasoline," Applied Energy, Elsevier, vol. 242(C), pages 462-479.
    3. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    4. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Li, Jing & Yang, Wenming & Zhou, Dezhi, 2017. "Review on the management of RCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 65-79.
    6. Fang, Cheng & Ouyang, Minggao & Tunestal, Per & Yang, Fuyuan & Yang, Xiaofan, 2018. "Closed-loop combustion phase control for multiple combustion modes by multiple injections in a compression ignition engine fueled by gasoline-diesel mixture," Applied Energy, Elsevier, vol. 231(C), pages 816-825.
    7. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    8. Chen, Guisheng & Di, Lei & Zhang, Quanchang & Zheng, Zunqing & Zhang, Wei, 2015. "Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines," Energy, Elsevier, vol. 93(P1), pages 284-293.
    9. Li, Jing & Ling, Xiang & Liu, Deng & Yang, Wenming & Zhou, Dezhi, 2018. "Numerical study on double injection techniques in a gasoline and biodiesel fueled RCCI (reactivity controlled compression ignition) engine," Applied Energy, Elsevier, vol. 211(C), pages 382-392.
    10. Yang, Hongqiang & Wang, Zhi & Shuai, Shijin & Wang, Jianxin & Xu, Hongming & Wang, Buyu, 2015. "Temporally and spatially distributed combustion in low-octane gasoline multiple premixed compression ignition mode," Applied Energy, Elsevier, vol. 150(C), pages 150-160.
    11. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    12. Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
    13. Wang, Libing & Wu, Zengyang & Ahmed, Ahfaz & Badra, Jihad A. & Sarathy, S. Mani & Roberts, William L. & Fang, Tiegang, 2019. "Auto-ignition of direct injection spray of light naphtha, primary reference fuels, gasoline and gasoline surrogate," Energy, Elsevier, vol. 170(C), pages 375-390.
    14. Dong, Shijun & Wang, Zhaowen & Yang, Can & Ou, Biao & Lu, Hongguang & Xu, Haocheng & Cheng, Xiaobei, 2018. "Investigations on the effects of fuel stratification on auto-ignition and combustion process of an ethanol/diesel dual-fuel engine," Applied Energy, Elsevier, vol. 230(C), pages 19-30.
    15. Hao, Han & Liu, Feiqi & Liu, Zongwei & Zhao, Fuquan, 2016. "Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions," Applied Energy, Elsevier, vol. 181(C), pages 391-398.
    16. Han, Weiqiang & Li, Bolun & Pan, Suozhu & Lu, Yao & Li, Xin, 2018. "Combined effect of inlet pressure, total cycle energy, and start of injection on low load reactivity controlled compression ignition combustion and emission characteristics in a multi-cylinder heavy-d," Energy, Elsevier, vol. 165(PB), pages 846-858.
    17. Bissoli, M. & Frassoldati, A. & Cuoci, A. & Ranzi, E. & Mehl, M. & Faravelli, T., 2016. "A new predictive multi-zone model for HCCI engine combustion," Applied Energy, Elsevier, vol. 178(C), pages 826-843.
    18. Poorghasemi, Kamran & Saray, Rahim Khoshbakhti & Ansari, Ehsan & Irdmousa, Behrouz Khoshbakht & Shahbakhti, Mehdi & Naber, Jeffery D., 2017. "Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine," Applied Energy, Elsevier, vol. 199(C), pages 430-446.
    19. Broatch, A. & Margot, X. & Novella, R. & Gomez-Soriano, J., 2016. "Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine," Energy, Elsevier, vol. 107(C), pages 612-624.
    20. Guerry, E. Scott & Raihan, Mostafa S. & Srinivasan, Kalyan K. & Krishnan, Sundar R. & Sohail, Aamir, 2016. "Injection timing effects on partially premixed diesel–methane dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 162(C), pages 99-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:192:y:2017:i:c:p:59-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.