IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v192y2017icp490-497.html
   My bibliography  Save this article

Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources

Author

Listed:
  • Ewing, Timothy
  • Ha, Phuc Thi
  • Beyenal, Haluk

Abstract

Sediment microbial fuel cells (SMFCs) are expected to be used as a renewable power source for remote environmental monitoring; therefore, evaluation of their long-term power performance is critical for their usability. In this paper, we present novel data needed to understand the long-term performance of SMFCs. We used 3-D Microemulsion (3DMe)™ doped anodes, which slowly release lactate and its fermented products. During our tests, anode-limited SMFCs with and without 3DMe-doped anodes were operated for more than 18months with a load simulating a sensor operation. We found that doping an anode with an electron donor reduced startup time and increased maximum power (55±2μW compared to 46±2μW) in the control systems. We found that the long-term steady power performance is approximately 33% of the maximum power (∼18μW). Finally, our small-sized SMFCs generated higher power densities than those in the literature (28mW/m2 versus 4mW/m2). Using electron donor doped anodes can be practical when a short startup time and initial high power are needed. However, if long-term power is critical, the addition of an electron donor does not provide a practical advantage. In addition, in long-term operation enrichment of the anode surface with electrochemically active bacteria does not provide any advantage.

Suggested Citation

  • Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
  • Handle: RePEc:eee:appene:v:192:y:2017:i:c:p:490-497
    DOI: 10.1016/j.apenergy.2016.08.177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916312867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonzalez del Campo, A. & Lobato, J. & Cañizares, P. & Rodrigo, M.A. & Fernandez Morales, F.J., 2013. "Short-term effects of temperature and COD in a microbial fuel cell," Applied Energy, Elsevier, vol. 101(C), pages 213-217.
    2. Alatraktchi, Fatima AlZahra’a & Zhang, Yifeng & Angelidaki, Irini, 2014. "Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community," Applied Energy, Elsevier, vol. 116(C), pages 216-222.
    3. Sevda, Surajbhan & Dominguez-Benetton, Xochitl & Vanbroekhoven, Karolien & De Wever, Heleen & Sreekrishnan, T.R. & Pant, Deepak, 2013. "High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 194-206.
    4. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    5. Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
    6. Rahimnejad, Mostafa & Ghoreyshi, Ali Asghar & Najafpour, Ghasem & Jafary, Tahereh, 2011. "Power generation from organic substrate in batch and continuous flow microbial fuel cell operations," Applied Energy, Elsevier, vol. 88(11), pages 3999-4004.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    2. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    3. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    4. Luciana Peixoto & Pier Parpot & Gilberto Martins, 2019. "Assessment of Electron Transfer Mechanisms during a Long-Term Sediment Microbial Fuel Cell Operation," Energies, MDPI, vol. 12(3), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
    2. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.
    3. Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
    4. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    5. Wang, Zhongli & Zhang, Baogang & Jiang, Yufeng & Li, Yunlong & He, Chao, 2018. "Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 33-42.
    6. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    7. Li, Tian & Zhou, Lean & Qian, Yawei & Wan, Lili & Du, Qing & Li, Nan & Wang, Xin, 2017. "Gravity settling of planktonic bacteria to anodes enhances current production of microbial fuel cells," Applied Energy, Elsevier, vol. 198(C), pages 261-266.
    8. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    9. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    10. Toczyłowska-Mamińska, Renata & Pielech-Przybylska, Katarzyna & Sekrecka-Belniak, Anna & Dziekońska-Kubczak, Urszula, 2020. "Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development," Applied Energy, Elsevier, vol. 271(C).
    11. Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.
    12. Li, Weiqing & Zhang, Shaohui & Chen, Gang & Hua, Yumei, 2014. "Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite," Applied Energy, Elsevier, vol. 126(C), pages 136-141.
    13. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    14. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    15. AlSayed, Ahmed & Soliman, Moomen & Eldyasti, Ahmed, 2020. "Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Kumar, Vikash & Nandy, Arpita & Das, Suparna & Salahuddin, M. & Kundu, Patit P., 2015. "Performance assessment of partially sulfonated PVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells," Applied Energy, Elsevier, vol. 137(C), pages 310-321.
    17. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    18. Xu, Zhiheng & Liu, Yucheng & Williams, Isaiah & Li, Yan & Qian, Fengyu & Wang, Lei & Lei, Yu & Li, Baikun, 2017. "Flat enzyme-based lactate biofuel cell integrated with power management system: Towards long term in situ power supply for wearable sensors," Applied Energy, Elsevier, vol. 194(C), pages 71-80.
    19. Antonopoulou, G. & Ntaikou, I. & Pastore, C. & di Bitonto, L. & Bebelis, S. & Lyberatos, G., 2019. "An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue," Applied Energy, Elsevier, vol. 242(C), pages 1064-1073.
    20. Walter, Xavier Alexis & Stinchcombe, Andrew & Greenman, John & Ieropoulos, Ioannis, 2017. "Urine transduction to usable energy: A modular MFC approach for smartphone and remote system charging," Applied Energy, Elsevier, vol. 192(C), pages 575-581.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:192:y:2017:i:c:p:490-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.