IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp824-834.html
   My bibliography  Save this article

Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition

Author

Listed:
  • Li, Yang
  • Yu, Xinlei
  • Li, Hongjun
  • Guo, Qinghua
  • Dai, Zhenghua
  • Yu, Guangsuo
  • Wang, Fuchen

Abstract

This paper presents a detailed kinetic study of H2S oxidation with presence of CO2 under fuel rich condition. Effect of CO2 reactivity on the partial oxidation of H2S was particularly studied via tube furnace experiment and detailed kinetic analysis with CHEMKIN-PRO software. A detailed kinetic model involving 90 species and 596 reactions was developed and validated using experimental data with respect to production of H2, and conversions of CO2 and H2S under different conditions by altering the initial gas composition temperature and residence time. In the tube furnace experiment, it was found that decomposition of H2S and conversion of CO2 were promoted by increase in temperature while H2 production decreased and CO concentration evidently increased at temperature higher than 1450K, which could be explained by CO2+H=CO+OH. The degree of this reaction as features the major reactivity of CO2 is obviously dependent on residence time whilst H2S partial oxidation proceeds much swiftly at 1473K or higher temperature. In addition to the experiment, rate of production (ROP) analysis for H2S, H and OH were performed by CHEMKIN-PRO. It was found for the partial oxidation of H2S, reactions S+SH=S2+H and SH+SH=H+HSS are important in H producing while H2S+O=SH+OH and H2O2(+M)=OH+OH(+M) are key steps for OH producing. Presence of CO2 prolonged the OH production process via CO2+H=CO+OH to the whole residence time which definitely differed from the condition without CO2. Thereby production selectivity of SO2 and H2O was promoted while that of H2 and S2 were degraded when CO2 was considerably present in the H2S partial oxidation scenario.

Suggested Citation

  • Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition," Applied Energy, Elsevier, vol. 190(C), pages 824-834.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:824-834
    DOI: 10.1016/j.apenergy.2016.12.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916319006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    2. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Experimental examination of flame chemistry in hydrogen sulfide-based flames," Applied Energy, Elsevier, vol. 88(8), pages 2601-2611, August.
    3. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2012. "Fate of sulfur with H2S injection in methane/air flames," Applied Energy, Elsevier, vol. 92(C), pages 57-64.
    4. Ye, Jingjing & Medwell, Paul R. & Varea, Emilien & Kruse, Stephan & Dally, Bassam B. & Pitsch, Heinz G., 2015. "An experimental study on MILD combustion of prevaporised liquid fuels," Applied Energy, Elsevier, vol. 151(C), pages 93-101.
    5. Yin, Chungen & Yan, Jinyue, 2016. "Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling," Applied Energy, Elsevier, vol. 162(C), pages 742-762.
    6. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2012. "Effect of CO2 and N2 concentration in acid gas stream on H2S combustion," Applied Energy, Elsevier, vol. 98(C), pages 53-58.
    7. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Toluene destruction in thermal stage of Claus reactor with oxygen enriched air," Applied Energy, Elsevier, vol. 115(C), pages 1-8.
    8. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Effect of H2S in methane/air flames on sulfur chemistry and products speciation," Applied Energy, Elsevier, vol. 88(8), pages 2593-2600, August.
    9. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under claus conditions," Applied Energy, Elsevier, vol. 109(C), pages 119-124.
    10. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames," Applied Energy, Elsevier, vol. 113(C), pages 1134-1140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yang & Guo, Qinghua & Yu, Xinlei & Dai, Zhenghua & Wang, Yifei & Yu, Guangsuo & Wang, Fuchen, 2017. "Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame," Applied Energy, Elsevier, vol. 206(C), pages 947-958.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Guo, Qinghua & Yu, Xinlei & Dai, Zhenghua & Wang, Yifei & Yu, Guangsuo & Wang, Fuchen, 2017. "Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame," Applied Energy, Elsevier, vol. 206(C), pages 947-958.
    2. Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2015. "Xylene and H2S destruction in high temperature flames under Claus condition," Applied Energy, Elsevier, vol. 154(C), pages 352-360.
    3. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Role of toluene to acid gas (H2S and CO2) combustion in H2/O2–N2 flame under Claus condition," Applied Energy, Elsevier, vol. 149(C), pages 62-68.
    4. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Toluene destruction in thermal stage of Claus reactor with oxygen enriched air," Applied Energy, Elsevier, vol. 115(C), pages 1-8.
    5. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2016. "Hydrogen sulfide reformation in the presence of methane," Applied Energy, Elsevier, vol. 178(C), pages 609-615.
    6. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2017. "Reformation of hydrogen sulfide to hydrogen in the presence of xylene," Applied Energy, Elsevier, vol. 203(C), pages 403-411.
    7. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    8. Davazdah Emami, Sina & Kasmani, Rafiziana Md. & Hamid, Mahar Diana & Che Hassan, Che Rosmani & Mokhtar, Khairiah Mohd, 2016. "Kinetic and dynamic analysis of hydrogen-enrichment mixtures in combustor systems – A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1072-1082.
    9. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames," Applied Energy, Elsevier, vol. 113(C), pages 1134-1140.
    10. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Role of toluene in hydrogen sulfide combustion under Claus condition," Applied Energy, Elsevier, vol. 112(C), pages 60-66.
    11. El-Melih, A.M. & Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2016. "Experimental examination of syngas recovery from acid gases," Applied Energy, Elsevier, vol. 164(C), pages 64-68.
    12. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under claus conditions," Applied Energy, Elsevier, vol. 109(C), pages 119-124.
    13. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    14. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    15. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    16. Tian, Ye & Zhou, Xiong & Ji, Xuanyu & Bai, Jisong & Yuan, Liang, 2019. "Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement," Energy, Elsevier, vol. 171(C), pages 149-160.
    17. Wu, Haiqian & Kuang, Min & Wang, Jialin & Zhao, Xiaojuan & Yang, Guohua & Ti, Shuguang & Ding, Jieyi, 2020. "Lower-arch location effect on the flow field, coal combustion, and NOx formation characteristics in a cascade-arch, down-fired furnace," Applied Energy, Elsevier, vol. 268(C).
    18. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    19. Bu, Changsheng & Gómez-Barea, Alberto & Chen, Xiaoping & Leckner, Bo & Liu, Daoyin & Pallarès, David & Lu, Ping, 2016. "Effect of CO2 on oxy-fuel combustion of coal-char particles in a fluidized bed: Modeling and comparison with the conventional mode of combustion," Applied Energy, Elsevier, vol. 177(C), pages 247-259.
    20. Díez, Luis I. & García-Mariaca, Alexander & Canalís, Paula & Llera, Eva, 2023. "Oxy-combustion characteristics of torrefied biomass and blends under O2/N2, O2/CO2 and O2/CO2/H2O atmospheres," Energy, Elsevier, vol. 284(C).

    More about this item

    Keywords

    Kinetic modelling; H2S oxidation; CO2; OH radical; H radical;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:824-834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.