IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp53-58.html
   My bibliography  Save this article

Effect of CO2 and N2 concentration in acid gas stream on H2S combustion

Author

Listed:
  • Selim, H.
  • Gupta, A.K.
  • Al Shoaibi, A.

Abstract

The Effect of the presence of nitrogen and carbon dioxide in H2S acid gas stream is investigated. Concentrations of up to 30% of N2 or CO2 in H2S stream have been examined. All cases were compared with the baseline case of 100% H2S acid gas stream. Temperature measurements showed that injection of CO2 or N2 in the H2S stream decreases the flame temperature. However, injection of CO2 resulted in temperature increase downstream. Increase of carbon dioxide in the acid gas stream increased SO2 mole fraction in the byproducts. In addition, the increase of CO2 decreased the asymptotic value of H2S at downstream locations. Furthermore, the presence of CO2 decreased the amount of sulfur captured during the reaction process. This is attributed to increase in oxidizing medium in the reaction pool from the presence of carbon dioxide. The increase in oxygen fostered H2S combustion to form higher amounts of SO2. Subsequently, the amount of captured sulfur and asymptotic value of H2S decreased. On the other hand, the presence of nitrogen in the acid gas stream did not affect the reaction process significantly. Nitrogen acted as an inert gas on the reactants and did not affect the reaction chemistry.

Suggested Citation

  • Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2012. "Effect of CO2 and N2 concentration in acid gas stream on H2S combustion," Applied Energy, Elsevier, vol. 98(C), pages 53-58.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:53-58
    DOI: 10.1016/j.apenergy.2012.02.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Effect of H2S in methane/air flames on sulfur chemistry and products speciation," Applied Energy, Elsevier, vol. 88(8), pages 2593-2600, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    2. Li, Yang & Guo, Qinghua & Yu, Xinlei & Dai, Zhenghua & Wang, Yifei & Yu, Guangsuo & Wang, Fuchen, 2017. "Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame," Applied Energy, Elsevier, vol. 206(C), pages 947-958.
    3. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Toluene destruction in thermal stage of Claus reactor with oxygen enriched air," Applied Energy, Elsevier, vol. 115(C), pages 1-8.
    4. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Role of toluene to acid gas (H2S and CO2) combustion in H2/O2–N2 flame under Claus condition," Applied Energy, Elsevier, vol. 149(C), pages 62-68.
    5. Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2015. "Xylene and H2S destruction in high temperature flames under Claus condition," Applied Energy, Elsevier, vol. 154(C), pages 352-360.
    6. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2017. "Reformation of hydrogen sulfide to hydrogen in the presence of xylene," Applied Energy, Elsevier, vol. 203(C), pages 403-411.
    7. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition," Applied Energy, Elsevier, vol. 190(C), pages 824-834.
    8. Bassani, Andrea & Pirola, Carlo & Maggio, Enrico & Pettinau, Alberto & Frau, Caterina & Bozzano, Giulia & Pierucci, Sauro & Ranzi, Eliseo & Manenti, Flavio, 2016. "Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production," Applied Energy, Elsevier, vol. 184(C), pages 1284-1291.
    9. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2016. "Hydrogen sulfide reformation in the presence of methane," Applied Energy, Elsevier, vol. 178(C), pages 609-615.
    10. Davazdah Emami, Sina & Kasmani, Rafiziana Md. & Hamid, Mahar Diana & Che Hassan, Che Rosmani & Mokhtar, Khairiah Mohd, 2016. "Kinetic and dynamic analysis of hydrogen-enrichment mixtures in combustor systems – A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1072-1082.
    11. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Role of toluene in hydrogen sulfide combustion under Claus condition," Applied Energy, Elsevier, vol. 112(C), pages 60-66.
    12. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under claus conditions," Applied Energy, Elsevier, vol. 109(C), pages 119-124.
    13. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames," Applied Energy, Elsevier, vol. 113(C), pages 1134-1140.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Selim, H. & Gupta, A.K. & Al Shoaibi, A., 2013. "Effect of reaction parameters on the quality of captured sulfur in Claus process," Applied Energy, Elsevier, vol. 104(C), pages 772-776.
    2. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Role of toluene to acid gas (H2S and CO2) combustion in H2/O2–N2 flame under Claus condition," Applied Energy, Elsevier, vol. 149(C), pages 62-68.
    3. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Toluene destruction in thermal stage of Claus reactor with oxygen enriched air," Applied Energy, Elsevier, vol. 115(C), pages 1-8.
    4. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2014. "Investigation of sulfur chemistry with acid gas addition in hydrogen/air flames," Applied Energy, Elsevier, vol. 113(C), pages 1134-1140.
    5. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Role of toluene in hydrogen sulfide combustion under Claus condition," Applied Energy, Elsevier, vol. 112(C), pages 60-66.
    6. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2017. "Reformation of hydrogen sulfide to hydrogen in the presence of xylene," Applied Energy, Elsevier, vol. 203(C), pages 403-411.
    7. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2016. "Hydrogen sulfide reformation in the presence of methane," Applied Energy, Elsevier, vol. 178(C), pages 609-615.
    8. Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2015. "Effect of benzene on product evolution in a H2S/O2 flame under Claus condition," Applied Energy, Elsevier, vol. 145(C), pages 21-26.
    9. Davazdah Emami, Sina & Kasmani, Rafiziana Md. & Hamid, Mahar Diana & Che Hassan, Che Rosmani & Mokhtar, Khairiah Mohd, 2016. "Kinetic and dynamic analysis of hydrogen-enrichment mixtures in combustor systems – A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1072-1082.
    10. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modelling of H2S oxidation with presence of CO2 under rich condition," Applied Energy, Elsevier, vol. 190(C), pages 824-834.
    11. Li, Yang & Guo, Qinghua & Yu, Xinlei & Dai, Zhenghua & Wang, Yifei & Yu, Guangsuo & Wang, Fuchen, 2017. "Effect of O2 enrichment on acid gas oxidation and formation of COS and CS2 in a rich diffusion flame," Applied Energy, Elsevier, vol. 206(C), pages 947-958.
    12. Selim, H. & Ibrahim, S. & Al Shoaibi, A. & Gupta, A.K., 2013. "Effect of oxygen enrichment on acid gas combustion in hydrogen/air flames under claus conditions," Applied Energy, Elsevier, vol. 109(C), pages 119-124.
    13. Selim, H. & Al Shoaibi, A. & Gupta, A.K., 2011. "Experimental examination of flame chemistry in hydrogen sulfide-based flames," Applied Energy, Elsevier, vol. 88(8), pages 2601-2611, August.
    14. Ibrahim, S. & Gupta, A.K. & Al Shoaibi, A., 2015. "Xylene and H2S destruction in high temperature flames under Claus condition," Applied Energy, Elsevier, vol. 154(C), pages 352-360.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:53-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.