IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp1207-1220.html
   My bibliography  Save this article

Securing highly penetrated wind energy systems using linearized transmission switching mechanism

Author

Listed:
  • Nikoobakht, Ahmad
  • Aghaei, Jamshid
  • Mardaneh, Mohammad

Abstract

The increasing penetration of Wind Energy Sources (WES) in an ac-network requires more Flexibility Resources (FRs), such as thermal units and transmission topology control by transmission switching (TS) action. The FRs, especially the TS action, can help to accommodate the intermittent and volatiles from WESs. Nevertheless, obstacles still remain and must be dealt before the TS action can be implemented by the real power systems. Indeed, the challenges comprise AC feasibility, the ability to handle large-scale real power systems and computational complexity. This paper investigates these challenges by developing the TS based on a linearized AC network (LAC-based TS) model that includes a linear representation of reactive power and bus voltage magnitudes. The proposed LAC-based TS model can handle high penetration of WES uncertainty in the stochastic security constrained unit commitment (SCUC). Also, the WES is the only source of uncertainty considered in this paper, which is modeled through an appropriate set of scenarios. Accordingly, the proposed model is formulated as a two-stage stochastic programming problem, wherein, the first-stage relates to the day-ahead scheduling, and the second-stage refers to the real-time operating conditions. An iterative algorithm based on the Benders decomposition method is used to solve the problem. The performance of the proposed model is investigated in details using a modified 6-bus and IEEE 118/662-bus test systems.

Suggested Citation

  • Nikoobakht, Ahmad & Aghaei, Jamshid & Mardaneh, Mohammad, 2017. "Securing highly penetrated wind energy systems using linearized transmission switching mechanism," Applied Energy, Elsevier, vol. 190(C), pages 1207-1220.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1207-1220
    DOI: 10.1016/j.apenergy.2016.12.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916319298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghaei, Jamshid & Nikoobakht, Ahmad & Siano, Pierluigi & Nayeripour, Majid & Heidari, Alireza & Mardaneh, Mohammad, 2016. "Exploring the reliability effects on the short term AC security-constrained unit commitment: A stochastic evaluation," Energy, Elsevier, vol. 114(C), pages 1016-1032.
    2. Wang, Jiadong & Wang, Jianhui & Liu, Cong & Ruiz, Juan P., 2013. "Stochastic unit commitment with sub-hourly dispatch constraints," Applied Energy, Elsevier, vol. 105(C), pages 418-422.
    3. Kubik, M.L. & Coker, P.J. & Barlow, J.F., 2015. "Increasing thermal plant flexibility in a high renewables power system," Applied Energy, Elsevier, vol. 154(C), pages 102-111.
    4. Quan, Hao & Srinivasan, Dipti & Khambadkone, Ashwin M. & Khosravi, Abbas, 2015. "A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources," Applied Energy, Elsevier, vol. 152(C), pages 71-82.
    5. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    6. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    7. Nikoobakht, Ahmad & Aghaei, Jamshid & Mardaneh, Mohammad, 2016. "Managing the risk of uncertain wind power generation in flexible power systems using information gap decision theory," Energy, Elsevier, vol. 114(C), pages 846-861.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Mingyu & Teng, Fei & Gan, Wei & Yao, Wei & Wen, Jinyu, 2023. "Blockchain for secure decentralized energy management of multi-energy system using state machine replication," Applied Energy, Elsevier, vol. 337(C).
    2. Peker, Meltem & Kocaman, Ayse Selin & Kara, Bahar Y., 2018. "Benefits of transmission switching and energy storage in power systems with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 1182-1197.
    3. Paul Masache & Diego Carrión & Jorge Cárdenas, 2021. "Optimal Transmission Line Switching to Improve the Reliability of the Power System Considering AC Power Flows," Energies, MDPI, vol. 14(11), pages 1-17, June.
    4. Mohseni-Bonab, Seyed Masoud & Kamwa, Innocent & Rabiee, Abbas & Chung, C.Y., 2022. "Stochastic optimal transmission Switching: A novel approach to enhance power grid security margins through vulnerability mitigation under renewables uncertainties," Applied Energy, Elsevier, vol. 305(C).
    5. Nikoobakht, Ahmad & Aghaei, Jamshid & Mendes, Gonçalo Pinto & Vahidinasab, Vahid, 2022. "Decentralized cooperation of natural gas and power systems with preserved privacy and decision-making independence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    2. Morales-España, Germán & Ramírez-Elizondo, Laura & Hobbs, Benjamin F., 2017. "Hidden power system inflexibilities imposed by traditional unit commitment formulations," Applied Energy, Elsevier, vol. 191(C), pages 223-238.
    3. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    4. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    5. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    6. Tong Guo & Yajing Gao & Xiaojie Zhou & Yonggang Li & Jiaomin Liu, 2018. "Optimal Scheduling of Power System Incorporating the Flexibility of Thermal Units," Energies, MDPI, vol. 11(9), pages 1-17, August.
    7. Garðarsdóttir, Stefanía Ó. & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2018. "Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system," Applied Energy, Elsevier, vol. 209(C), pages 277-289.
    8. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    9. Sha Liu & Jiong Shen, 2022. "Modeling of Large-Scale Thermal Power Plants for Performance Prediction in Deep Peak Shaving," Energies, MDPI, vol. 15(9), pages 1-18, April.
    10. Hemmati, Reza & Saboori, Hedayat & Saboori, Saeid, 2016. "Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units," Renewable Energy, Elsevier, vol. 95(C), pages 74-84.
    11. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    12. Saleh Abujarad & Mohd Wazir Mustafa & Jasrul Jamani Jamian & Abdirahman M. Abdilahi & Jeroen D. M. De Kooning & Jan Desmet & Lieven Vandevelde, 2020. "An Adjusted Weight Metric to Quantify Flexibility Available in Conventional Generators for Low Carbon Power Systems," Energies, MDPI, vol. 13(21), pages 1-19, October.
    13. Çam, Eren, 2020. "Optimal Dispatch of a Coal-Fired Power Plant with Integrated Thermal Energy Storage," EWI Working Papers 2020-5, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    14. Safdarnejad, Seyed Mostafa & Hedengren, John D. & Powell, Kody M., 2018. "Performance comparison of low temperature and chemical absorption carbon capture processes in response to dynamic electricity demand and price profiles," Applied Energy, Elsevier, vol. 228(C), pages 577-592.
    15. Xie, Kaigui & Dong, Jizhe & Singh, Chanan & Hu, Bo, 2016. "Optimal capacity and type planning of generating units in a bundled wind–thermal generation system," Applied Energy, Elsevier, vol. 164(C), pages 200-210.
    16. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    17. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2020. "Estimating Long-Term Global Supply Costs for Low-Carbon Hydrogen," EWI Working Papers 2020-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI), revised 10 Aug 2021.
    18. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2015. "Value of flexible electric vehicles in providing spinning reserve services," Applied Energy, Elsevier, vol. 157(C), pages 60-74.
    19. Changgi Min, 2020. "Impact Analysis of Transmission Congestion on Power System Flexibility in Korea," Energies, MDPI, vol. 13(9), pages 1-11, May.
    20. Oree, Vishwamitra & Sayed Hassen, Sayed Z., 2016. "A composite metric for assessing flexibility available in conventional generators of power systems," Applied Energy, Elsevier, vol. 177(C), pages 683-691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1207-1220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.