IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp1119-1125.html
   My bibliography  Save this article

The search of proper oxygen carriers for chemical looping partial oxidation of carbon

Author

Listed:
  • Zhang, Jinzhi
  • He, Tao
  • Wang, Zhiqi
  • Zhu, Min
  • Zhang, Ke
  • Li, Bin
  • Wu, Jinhu

Abstract

Chemical looping partial oxidation process has more advantages over conventional chemical looping process, which can not only completely avoid the problem of greenhouse gas emissions, but also supply syngas products for chemical industry. The aim of the present work is to perform fundamental investigation on chemical looping partial oxidation of solid fuels. Production of CO through chemical looping partial oxidation of carbon was investigated in order to find proper oxygen carrier with good reactivity and high selectivity. A simple and easy to use method based on the zone division of Ellingham diagram was offered to distinguish the oxidation ability of various metal oxides, and three zones including complete oxidation, partial oxidation and inert zones were divided. CaFe2O4, Ca2Fe2O5 and FeAl2O4 in partial oxidation zone together with Fe2O3 in complete oxidation zone were chosen as target oxygen carriers (OCs) for chemical looping partial oxidation of carbon in this work. Of the target metal oxides, CaFe2O4 and Ca2Fe2O5 were found to have fast reaction rate, large oxygen-carrying capacity, high CO selectivity, and good regeneration performance, which made them very attractive for the purpose of chemical looping partial oxidation of solid fuels in real applications.

Suggested Citation

  • Zhang, Jinzhi & He, Tao & Wang, Zhiqi & Zhu, Min & Zhang, Ke & Li, Bin & Wu, Jinhu, 2017. "The search of proper oxygen carriers for chemical looping partial oxidation of carbon," Applied Energy, Elsevier, vol. 190(C), pages 1119-1125.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1119-1125
    DOI: 10.1016/j.apenergy.2017.01.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyngfelt, Anders, 2014. "Chemical-looping combustion of solid fuels – Status of development," Applied Energy, Elsevier, vol. 113(C), pages 1869-1873.
    2. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    3. Huang, Zhen & He, Fang & Zhu, Huangqing & Chen, Dezhen & Zhao, Kun & Wei, Guoqiang & Feng, Yipeng & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2015. "Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier," Applied Energy, Elsevier, vol. 157(C), pages 546-553.
    4. Nandy, Anirban & Loha, Chanchal & Gu, Sai & Sarkar, Pinaki & Karmakar, Malay K. & Chatterjee, Pradip K., 2016. "Present status and overview of Chemical Looping Combustion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 597-619.
    5. Siriwardane, Ranjani & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Chemical looping coal gasification with calcium ferrite and barium ferrite via solid–solid reactions," Applied Energy, Elsevier, vol. 165(C), pages 952-966.
    6. Ishida, M. & Zheng, D. & Akehata, T., 1987. "Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis," Energy, Elsevier, vol. 12(2), pages 147-154.
    7. Siriwardane, Ranjani V. & Ksepko, Ewelina & Tian, Hanjing & Poston, James & Simonyi, Thomas & Sciazko, Marek, 2013. "Interaction of iron–copper mixed metal oxide oxygen carriers with simulated synthesis gas derived from steam gasification of coal," Applied Energy, Elsevier, vol. 107(C), pages 111-123.
    8. Tang, Mingchen & Xu, Long & Fan, Maohong, 2015. "Progress in oxygen carrier development of methane-based chemical-looping reforming: A review," Applied Energy, Elsevier, vol. 151(C), pages 143-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miller, Duane D. & Siriwardane, Ranjani, 2018. "CaFe2O4 oxygen carrier characterization during the partial oxidation of coal in the chemical looping gasification application," Applied Energy, Elsevier, vol. 224(C), pages 708-716.
    2. Lei, Zhiping & Yan, Jingchong & Fang, Jia & Shui, Hengfu & Ren, Shibiao & Wang, Zhicai & Li, Zhanku & Kong, Ying & Kang, Shigang, 2021. "Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe–CaO and Fe–CeO2," Energy, Elsevier, vol. 216(C).
    3. Görke, R.H. & Hu, W. & Dunstan, M.T. & Dennis, J.S. & Scott, S.A., 2018. "Exploration of the material property space for chemical looping air separation applied to carbon capture and storage," Applied Energy, Elsevier, vol. 212(C), pages 478-488.
    4. Mendiara, T. & García-Labiano, F. & Abad, A. & Gayán, P. & de Diego, L.F. & Izquierdo, M.T. & Adánez, J., 2018. "Negative CO2 emissions through the use of biofuels in chemical looping technology: A review," Applied Energy, Elsevier, vol. 232(C), pages 657-684.
    5. Liu, Guicai & Liao, Yanfen & Wu, Yuting & Ma, Xiaoqian, 2018. "Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive," Applied Energy, Elsevier, vol. 212(C), pages 955-965.
    6. Liu, Shuai & Xiang, Dong & Xu, Ying & Sun, Zhe & Cao, Yan, 2017. "Relationship between electronic properties of Fe3O4 substituted by Ca and Ba and their reactivity in chemical looping process: A first-principles study," Applied Energy, Elsevier, vol. 202(C), pages 550-557.
    7. Li, Gang & Lv, Xuewei & Ding, Chengyi & Zhou, Xuangeng & Zhong, Dapeng & Qiu, Guibao, 2020. "Non-isothermal carbothermic reduction kinetics of calcium ferrite and hematite as oxygen carriers for chemical looping gasification applications," Applied Energy, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siriwardane, Ranjani & Riley, Jarrett & Atallah, Chris, 2022. "CO2 utilization potential of a novel calcium ferrite based looping process fueled with coal: Experimental evaluation of various coal feedstocks and thermodynamic integrated process analysis," Applied Energy, Elsevier, vol. 323(C).
    2. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    3. Nadgouda, Sourabh G. & Guo, Mengqing & Tong, Andrew & Fan, L.-S., 2019. "High purity syngas and hydrogen coproduction using copper-iron oxygen carriers in chemical looping reforming process," Applied Energy, Elsevier, vol. 235(C), pages 1415-1426.
    4. Tian, Xin & Zhao, Haibo & Ma, Jinchen, 2017. "Cement bonded fine hematite and copper ore particles as oxygen carrier in chemical looping combustion," Applied Energy, Elsevier, vol. 204(C), pages 242-253.
    5. Cho, Won Chul & Lee, Jun Kyu & Nam, Gyeong Duk & Kim, Chang Hee & Cho, Hyun-Seok & Joo, Jong Hoon, 2019. "Degradation analysis of mixed ionic-electronic conductor-supported iron-oxide oxygen carriers for chemical-looping conversion of methane," Applied Energy, Elsevier, vol. 239(C), pages 644-657.
    6. Siriwardane, Ranjani & Riley, Jarrett & Benincosa, William & Bayham, Samuel & Bobek, Michael & Straub, Douglas & Weber, Justin, 2021. "Development of CuFeMnAlO4+δ oxygen carrier with high attrition resistance and 50-kWth methane/air chemical looping combustion tests," Applied Energy, Elsevier, vol. 286(C).
    7. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett & Poston, James, 2020. "A particle-scale reduction model of copper iron manganese oxide with CO for chemical looping combustion," Applied Energy, Elsevier, vol. 262(C).
    8. Benincosa, William & Siriwardane, Ranjani & Tian, Hanjing & Riley, Jarrett, 2017. "Unique phase identification of trimetallic copper iron manganese oxygen carrier using simultaneous differential scanning calorimetry/thermogravimetric analysis during chemical looping combustion react," Applied Energy, Elsevier, vol. 203(C), pages 522-534.
    9. Shareq Mohd Nazir & Olav Bolland & Shahriar Amini, 2018. "Analysis of Combined Cycle Power Plants with Chemical Looping Reforming of Natural Gas and Pre-Combustion CO 2 Capture," Energies, MDPI, vol. 11(1), pages 1-13, January.
    10. Siriwardane, Ranjani & Benincosa, William & Riley, Jarrett & Tian, Hanjing & Richards, George, 2016. "Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier," Applied Energy, Elsevier, vol. 183(C), pages 1550-1564.
    11. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    12. Zeng, Jimin & Xiao, Rui & Zhang, Shuai & Zhang, Huiyan & Zeng, Dewang & Qiu, Yu & Ma, Zhong, 2018. "Identifying iron-based oxygen carrier reduction during biomass chemical looping gasification on a thermogravimetric fixed-bed reactor," Applied Energy, Elsevier, vol. 229(C), pages 404-412.
    13. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    14. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Zhang, Yitao & Wang, Dawei & Pottimurthy, Yaswanth & Kong, Fanhe & Hsieh, Tien-Lin & Sakadjian, Bartev & Chung, Cheng & Park, Cody & Xu, Dikai & Bao, Jinhua & Velazquez-Vargas, Luis & Guo, Mengqing & , 2021. "Coal direct chemical looping process: 250 kW pilot-scale testing for power generation and carbon capture," Applied Energy, Elsevier, vol. 282(PA).
    16. Cerciello, Francesca & Coppola, Antonio & Lacovig, Paolo & Senneca, Osvalda & Salatino, Piero, 2021. "Characterization of surface-oxides on char under periodically changing oxidation/desorption conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Zhang, Hao & Liu, Xiangyu & Hong, Hui & Jin, Hongguang, 2018. "Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion," Applied Energy, Elsevier, vol. 213(C), pages 285-292.
    18. Shah, Vedant & Cheng, Zhuo & Baser, Deven S. & Fan, Jonathan A. & Fan, Liang-Shih, 2021. "Highly Selective Production of Syngas from Chemical Looping Reforming of Methane with CO2 Utilization on MgO-supported Calcium Ferrite Redox Materials," Applied Energy, Elsevier, vol. 282(PA).
    19. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
    20. Wang, Xudong & Shao, Yali & Jin, Baosheng, 2021. "Thermodynamic evaluation and modelling of an auto-thermal hybrid system of chemical looping combustion and air separation for power generation coupling with CO2 cycles," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1119-1125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.