IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip1p294-299.html
   My bibliography  Save this article

A study on heat absorbing and vapor generating characteristics of H2O/LiBr mixture in an evacuated tube

Author

Listed:
  • Chen, Guansheng
  • Liu, Chongchong
  • Li, Nanshuo
  • Li, Feng

Abstract

It is well known that application of solar powered absorption refrigeration (SPAR) systems will save energy, especially for air conditioning during the summer. This paper presents a SPAR system where evacuated tubes act as both solar collector and solution generator simultaneously while aqueous lithium bromide (H2O/LiBr) is used as the working fluid. In order to investigate the heat absorbing and vapor generating characteristics of lithium bromide solution in the evacuated tube, a test system was built and tested outdoors in Guangzhou in October 2015. The test results showed that lithium bromide solution in an evacuated tube can be heated up rapidly and generate vapor continuously. The vaporization rate, the solution concentration, the equivalent refrigerating capacity, the total energy absorbed by the solution, the thermal collecting efficiency and the solar coefficient of performance in theory were analyzed according to the test data. The work provides a reference for the design and simulation of SPAR systems where evacuated tubes are used as both solar collector and lithium bromide solution generator.

Suggested Citation

  • Chen, Guansheng & Liu, Chongchong & Li, Nanshuo & Li, Feng, 2017. "A study on heat absorbing and vapor generating characteristics of H2O/LiBr mixture in an evacuated tube," Applied Energy, Elsevier, vol. 185(P1), pages 294-299.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:294-299
    DOI: 10.1016/j.apenergy.2016.10.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Praene, Jean Philippe & Marc, Olivier & Lucas, Franck & Miranville, Frédéric, 2011. "Simulation and experimental investigation of solar absorption cooling system in Reunion Island," Applied Energy, Elsevier, vol. 88(3), pages 831-839, March.
    2. Venegas, M. & Rodríguez-Hidalgo, M.C. & Salgado, R. & Lecuona, A. & Rodríguez, P. & Gutiérrez, G., 2011. "Experimental diagnosis of the influence of operational variables on the performance of a solar absorption cooling system," Applied Energy, Elsevier, vol. 88(4), pages 1447-1454, April.
    3. Al-Alili, A. & Islam, M.D. & Kubo, I. & Hwang, Y. & Radermacher, R., 2012. "Modeling of a solar powered absorption cycle for Abu Dhabi," Applied Energy, Elsevier, vol. 93(C), pages 160-167.
    4. Fong, K.F. & Lee, C.K. & Chow, T.T., 2012. "Comparative study of solar cooling systems with building-integrated solar collectors for use in sub-tropical regions like Hong Kong," Applied Energy, Elsevier, vol. 90(1), pages 189-195.
    5. Li, Z. F. & Sumathy, K., 2000. "Technology development in the solar absorption air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(3), pages 267-293, September.
    6. Balaras, Constantinos A. & Grossman, Gershon & Henning, Hans-Martin & Infante Ferreira, Carlos A. & Podesser, Erich & Wang, Lei & Wiemken, Edo, 2007. "Solar air conditioning in Europe--an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 299-314, February.
    7. Assilzadeh, F. & Kalogirou, S.A. & Ali, Y. & Sopian, K., 2005. "Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors," Renewable Energy, Elsevier, vol. 30(8), pages 1143-1159.
    8. Izquierdo, M. & González-Gil, A. & Palacios, E., 2014. "Solar-powered single-and double-effect directly air-cooled LiBr–H2O absorption prototype built as a single unit," Applied Energy, Elsevier, vol. 130(C), pages 7-19.
    9. Mateus, Tiago & Oliveira, Armando C., 2009. "Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates," Applied Energy, Elsevier, vol. 86(6), pages 949-957, June.
    10. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    11. Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
    12. Pons, M. & Anies, G. & Boudehenn, F. & Bourdoukan, P. & Castaing-Lasvignottes, J. & Evola, G. & Le Denn, A. & Le Pierrès, N. & Marc, O. & Mazet, N. & Stitou, D. & Lucas, F., 2012. "Performance comparison of six solar-powered air-conditioners operated in five places," Energy, Elsevier, vol. 46(1), pages 471-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naik, B. Kiran & Bhowmik, Mrinal & Muthukumar, P., 2019. "Experimental investigation and numerical modelling on the performance assessments of evacuated U – Tube solar collector systems," Renewable Energy, Elsevier, vol. 134(C), pages 1344-1361.
    2. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2017. "Multi-criteria evaluation of parabolic trough collector with internally finned absorbers," Applied Energy, Elsevier, vol. 205(C), pages 540-561.
    3. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    2. Lubis, Arnas & Jeong, Jongsoo & Giannetti, Niccolo & Yamaguchi, Seiichi & Saito, Kiyoshi & Yabase, Hajime & Alhamid, Muhammad I. & Nasruddin,, 2018. "Operation performance enhancement of single-double-effect absorption chiller," Applied Energy, Elsevier, vol. 219(C), pages 299-311.
    3. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    4. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    5. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
    6. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    7. Reda, Francesco & Viot, Maxime & Sipilä, Kari & Helm, Martin, 2016. "Energy assessment of solar cooling thermally driven system configurations for an office building in a Nordic country," Applied Energy, Elsevier, vol. 166(C), pages 27-43.
    8. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    9. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    10. Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.
    11. Chugh, Devesh & Gluesenkamp, Kyle & Abdelaziz, Omar & Moghaddam, Saeed, 2017. "Ionic liquid-based hybrid absorption cycle for water heating, dehumidification, and cooling," Applied Energy, Elsevier, vol. 202(C), pages 746-754.
    12. Buonomano, A. & Calise, F. & Palombo, A., 2013. "Solar heating and cooling systems by CPVT and ET solar collectors: A novel transient simulation model," Applied Energy, Elsevier, vol. 103(C), pages 588-606.
    13. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    14. Hirmiz, R. & Lightstone, M.F. & Cotton, J.S., 2018. "Performance enhancement of solar absorption cooling systems using thermal energy storage with phase change materials," Applied Energy, Elsevier, vol. 223(C), pages 11-29.
    15. Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
    16. Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Comparison of Different Solar-Assisted Air Conditioning Systems for Australian Office Buildings," Energies, MDPI, vol. 10(10), pages 1-27, September.
    17. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    18. Siddique, Muhammad Zeeshan & Badar, Abdul Waheed & Siddiqui, M. Salman & Butt, Fahad Sarfraz & Saleem, Muhammad & Mahmood, Khalid & Fazal, Imran, 2022. "Performance analysis of double effect solar absorption cooling system with different schemes of hot/cold auxiliary integration and parallel-serial arrangement of solar field," Energy, Elsevier, vol. 245(C).
    19. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    20. Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:294-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.