IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp329-336.html
   My bibliography  Save this article

A study on the impact of SO2 on CO2 injectivity for CO2 storage in a Canadian saline aquifer

Author

Listed:
  • Wang, Zhiyu
  • Wang, Jinsheng
  • Lan, Christopher
  • He, Ian
  • Ko, Vivien
  • Ryan, David
  • Wigston, Andrew

Abstract

Potential effects of SO2 as an impurity on CO2 injectivity for CO2 storage in a targeted sandstone saline aquifer in western Canada were investigated. Batch experiments using rock and brine samples in contact with supercritical CO2 and CO2 mixtures with SO2 were conducted in high-pressure reactors for 45days. The results suggest that SO2 increased precipitation of sodium chloride and calcium sulfate dehydrate, and also increased the dissolution of quartz. Moreover, the precipitation of sodium chloride appeared to be concurrent with the dissolution of quartz, the predominant constituent of the rock. The concurrent precipitation of sodium chloride and dissolution of quartz could be attributed to taking up of water by H4SiO4 that reduces the number of water molecules in the hydration shells of Na+ and Cl− ions in highly concentrated brine. According to this view, the dissolution of quartz, which would be much slower than the reassociation of dissolved sodium chloride ions, is limiting the rate of sodium chloride precipitation. The rate of quartz dissolution was estimated based on the present experimental data, which could be used to assess salt precipitation and determine suitable operation conditions for CO2 injection. The findings of this work should also be applicable to acid gas injection in oil and gas industry.

Suggested Citation

  • Wang, Zhiyu & Wang, Jinsheng & Lan, Christopher & He, Ian & Ko, Vivien & Ryan, David & Wigston, Andrew, 2016. "A study on the impact of SO2 on CO2 injectivity for CO2 storage in a Canadian saline aquifer," Applied Energy, Elsevier, vol. 184(C), pages 329-336.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:329-336
    DOI: 10.1016/j.apenergy.2016.09.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916313678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.09.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ziabakhsh-Ganji, Zaman & Kooi, Henk, 2014. "Sensitivity of the CO2 storage capacity of underground geological structures to the presence of SO2 and other impurities," Applied Energy, Elsevier, vol. 135(C), pages 43-52.
    2. Wei, Ning & Li, Xiaochun & Wang, Yan & Zhu, Qianlin & Liu, Shengnan & Liu, Naizhong & Su, Xuebing, 2015. "Geochemical impact of aquifer storage for impure CO2 containing O2 and N2: Tongliao field experiment," Applied Energy, Elsevier, vol. 145(C), pages 198-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yu & Wang, Quanhai & Lu, Xiaofeng & Li, Jianbo & Liu, Zhuo, 2018. "Combustion behaviors and pollutant emission characteristics of low calorific oil shale and its semi-coke in a lab-scale fluidized bed combustor," Applied Energy, Elsevier, vol. 211(C), pages 631-638.
    2. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    3. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    4. Seungmo Ko & Sung-Min Kim & Hochang Jang, 2023. "A Simulation Study on Evaluating the Influence of Impurities on Hydrogen Production in Geological Carbon Dioxide Storage," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    5. Vo Thanh, Hung & Lee, Kang-Kun, 2022. "Application of machine learning to predict CO2 trapping performance in deep saline aquifers," Energy, Elsevier, vol. 239(PE).
    6. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    7. Chen, Long & Xu, Guiyin & Rui, Zhenhua & Alshawabkeh, Akram N., 2019. "Demonstration of a feasible energy-water-environment nexus: Waste sulfur dioxide for water treatment," Applied Energy, Elsevier, vol. 250(C), pages 1011-1022.
    8. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Didi & Zhang, Hongcheng & Li, Yang & Xu, Wenbin & Jiang, Xi, 2018. "Effects of N2 and H2S binary impurities on CO2 geological storage in stratified formation – A sensitivity study," Applied Energy, Elsevier, vol. 229(C), pages 482-492.
    2. Wei, Ning & Li, Xiaochun & Wang, Yan & Zhu, Qianlin & Liu, Shengnan & Liu, Naizhong & Su, Xuebing, 2015. "Geochemical impact of aquifer storage for impure CO2 containing O2 and N2: Tongliao field experiment," Applied Energy, Elsevier, vol. 145(C), pages 198-210.
    3. Gimeno, Beatriz & Artal, Manuela & Velasco, Inmaculada & Blanco, Sofía T. & Fernández, Javier, 2017. "Influence of SO2 on CO2 storage for CCS technology: Evaluation of CO2/SO2 co-capture," Applied Energy, Elsevier, vol. 206(C), pages 172-180.
    4. Zhong, Jinjin & Jiang, Xi, 2017. "A case study of using cosmic ray muons to monitor supercritical CO2 migration in geological formations," Applied Energy, Elsevier, vol. 185(P2), pages 1450-1458.
    5. Li, Didi & Jiang, Xi, 2017. "Numerical investigation of the partitioning phenomenon of carbon dioxide and multiple impurities in deep saline aquifers," Applied Energy, Elsevier, vol. 185(P2), pages 1411-1423.
    6. Li, Didi & He, Yao & Zhang, Hongcheng & Xu, Wenbin & Jiang, Xi, 2017. "A numerical study of the impurity effects on CO2 geological storage in layered formation," Applied Energy, Elsevier, vol. 199(C), pages 107-120.
    7. Fan, Jing-Li & Shen, Shuo & Wei, Shi-Jie & Xu, Mao & Zhang, Xian, 2020. "Near-term CO2 storage potential for coal-fired power plants in China: A county-level source-sink matching assessment," Applied Energy, Elsevier, vol. 279(C).
    8. Sina Omrani & Saeed Mahmoodpour & Behzad Rostami & Mehdi Salehi Sedeh & Ingo Sass, 2021. "Diffusion coefficients of CO2–SO2–water and CO2–N2–water systems and their impact on the CO2 sequestration process: Molecular dynamics and dissolution process simulations," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 764-779, August.

    More about this item

    Keywords

    CO2 storage; Saline aquifer; SO2; CO2 injectivity;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:329-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.