IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp155-170.html
   My bibliography  Save this article

Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate

Author

Listed:
  • Singh, Ramkishore
  • Lazarus, I.J.
  • Kishore, V.V.N.

Abstract

Fenestration has become an integral part of the buildings and has a significant impact on the energy and indoor visual performances. Inappropriate design of the fenestration component may lead to low energy efficiency and visual discomfort as a result of high solar and thermal heat gains, excessive daylight and direct sunlight. External venetian blind has been identified as one of the effective shading devices for controlling the heat gains and daylight through fenestration. This study explores uncertainty and sensitivity analyses to identify and prioritize the most influencing parameters for designing glazed components that include external shading devices for office buildings. The study was performed for hot-dry climate of Jodhpur (Latitude 26° 180′N, longitude 73° 010′E) using EnergyPlus, a whole building energy simulation tool providing a large number of inputs for eight façade orientations. A total 150 and 845 data points (for each orientation) for input variables were generated using Hyper Cubic Sampling and extended FAST methods for uncertainty and sensitivity analyses respectively. Results indicated a large uncertainty in the lighting, HVAC, source energy consumptions and useful daylight illuminance (UDI). The estimated coefficients of variation were highest (up to 106%) for UDI, followed by lighting energy (up to 45%) and HVAC energy use (around 33%). The sensitivity analysis identified window to wall ratio, glazing type, blind type (orientation of slats) and slat angle as highly influencing factors for energy and visual performances regardless of façade orientation. The other influencing parameters are interior surface absorptance of wall and front surface solar reflectance of blind slat; however, the magnitude of influence varied with façade orientation.

Suggested Citation

  • Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2016. "Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate," Applied Energy, Elsevier, vol. 184(C), pages 155-170.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:155-170
    DOI: 10.1016/j.apenergy.2016.10.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916314313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tomlin, Alison. S., 2006. "The use of global uncertainty methods for the evaluation of combustion mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1219-1231.
    2. Kusiak, Andrew & Li, Mingyang & Zhang, Zijun, 2010. "A data-driven approach for steam load prediction in buildings," Applied Energy, Elsevier, vol. 87(3), pages 925-933, March.
    3. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    4. Tian, Cheng & Chen, Tingyao & Chung, Tse-ming, 2014. "Experimental and simulating examination of computer tools, Radlink and DOE2, for daylighting and energy simulation with venetian blinds," Applied Energy, Elsevier, vol. 124(C), pages 130-139.
    5. Marszal, Anna Joanna & Heiselberg, Per, 2011. "Life cycle cost analysis of a multi-storey residential Net Zero Energy Building in Denmark," Energy, Elsevier, vol. 36(9), pages 5600-5609.
    6. Gorla, Rama S. R., 2004. "Probabilistic analysis of a solid-oxide fuel-cell based hybrid gas-turbine system," Applied Energy, Elsevier, vol. 78(1), pages 63-74, May.
    7. Ramos, Greici & Ghisi, Enedir, 2010. "Analysis of daylight calculated using the EnergyPlus programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1948-1958, September.
    8. Mechri, Houcem Eddine & Capozzoli, Alfonso & Corrado, Vincenzo, 2010. "USE of the ANOVA approach for sensitive building energy design," Applied Energy, Elsevier, vol. 87(10), pages 3073-3083, October.
    9. Kwon, Soon-Duck, 2010. "Uncertainty analysis of wind energy potential assessment," Applied Energy, Elsevier, vol. 87(3), pages 856-865, March.
    10. Hoinka, Krzysztof & Ziębik, Andrzej, 2010. "Mathematical model for the choice of an energy management structure of complex buildings," Energy, Elsevier, vol. 35(2), pages 1146-1156.
    11. Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
    12. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    13. Kleijnen, J.P.C. & Bettonvil, B.W.M., 1997. "Searching for important factors in simulation models with many factors : Sequential bifurcation," Other publications TiSEM be826993-22f9-4cb3-89df-3, Tilburg University, School of Economics and Management.
    14. Hee, W.J. & Alghoul, M.A. & Bakhtyar, B. & Elayeb, OmKalthum & Shameri, M.A. & Alrubaih, M.S. & Sopian, K., 2015. "The role of window glazing on daylighting and energy saving in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 323-343.
    15. Capozzoli, Alfonso & Gorrino, Alice & Corrado, Vincenzo, 2013. "A building thermal bridges sensitivity analysis," Applied Energy, Elsevier, vol. 107(C), pages 229-243.
    16. Li, Danny H.W. & Cheung, K.L. & Wong, S.L. & Lam, Tony N.T., 2010. "An analysis of energy-efficient light fittings and lighting controls," Applied Energy, Elsevier, vol. 87(2), pages 558-567, February.
    17. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
    18. Liu, Mingzhe & Wittchen, Kim Bjarne & Heiselberg, Per Kvols, 2015. "Control strategies for intelligent glazed façade and their influence on energy and comfort performance of office buildings in Denmark," Applied Energy, Elsevier, vol. 145(C), pages 43-51.
    19. Bettonvil, Bert & Kleijnen, Jack P. C., 1997. "Searching for important factors in simulation models with many factors: Sequential bifurcation," European Journal of Operational Research, Elsevier, vol. 96(1), pages 180-194, January.
    20. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    2. Flor, Jan-Frederik & Liu, Dingming & Sun, Yanyi & Beccarelli, Paolo & Chilton, John & Wu, Yupeng, 2018. "Optical aspects and energy performance of switchable ethylene-tetrafluoroethylene (ETFE) foil cushions," Applied Energy, Elsevier, vol. 229(C), pages 335-351.
    3. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    4. Chi, Fang'ai & Wang, Ruonan & Li, Gaomei & Xu, Liming & Wang, Yonghe & Peng, Changhai, 2020. "Integration of sun-tracking shading panels into window system towards maximum energy saving and non-glare daylighting," Applied Energy, Elsevier, vol. 260(C).
    5. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    6. Sun, Yanyi & Liang, Runqi & Wu, Yupeng & Wilson, Robin & Rutherford, Peter, 2017. "Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)," Applied Energy, Elsevier, vol. 205(C), pages 951-963.
    7. Xie, Jing Chao & Xue, Peng & Mak, Cheuk Ming & Liu, Jia Ping, 2017. "Balancing energy and daylighting performances for envelope design: A new index and proposition of a case study in Hong Kong," Applied Energy, Elsevier, vol. 205(C), pages 13-22.
    8. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
    9. Kunwar, Niraj & Cetin, Kristen S. & Passe, Ulrike & Zhou, Xiaohui & Li, Yunhua, 2020. "Energy savings and daylighting evaluation of dynamic venetian blinds and lighting through full-scale experimental testing," Energy, Elsevier, vol. 197(C).
    10. Pinto, Maria Cristina & Crespi, Giulia & Dell'Anna, Federico & Becchio, Cristina, 2023. "Combining energy dynamic simulation and multi-criteria analysis for supporting investment decisions on smart shading devices in office buildings," Applied Energy, Elsevier, vol. 332(C).
    11. Shilei Lu & Zichen Wang & Tianshuai Zhang, 2020. "Quantitative Analysis and Multi-Index Evaluation of the Green Building Envelope Performance in the Cold Area of China," Sustainability, MDPI, vol. 12(1), pages 1-38, January.
    12. Ramkishore Singh & Dharam Buddhi & Samar Thapa & Chander Prakash & Rajesh Singh & Atul Sharma & Shane Sheoran & Kuldeep Kumar Saxena, 2022. "Sensitivity Analysis for Decisive Design Parameters for Energy and Indoor Visual Performances of a Glazed Façade Office Building," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    13. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    14. Wu, Yujie & Kämpf, Jérôme H. & Scartezzini, Jean-Louis, 2019. "Automated ‘Eye-sight’ Venetian blinds based on an embedded photometric device with real-time daylighting computing," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Pang, Zhihong & O'Neill, Zheng, 2018. "Uncertainty quantification and sensitivity analysis of the domestic hot water usage in hotels," Applied Energy, Elsevier, vol. 232(C), pages 424-442.
    16. Liu, Zhongbing & Zhang, Yelin & Zhang, Ling & Luo, Yongqiang & Wu, Zhenghong & Wu, Jing & Yin, Yingde & Hou, Guoqing, 2018. "Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system," Applied Energy, Elsevier, vol. 228(C), pages 1887-1900.
    17. Yunbo Liu & Wanjiang Wang & Yumeng Huang & Junkang Song & Zhenan Zhou, 2024. "Energy Performance Analysis and Study of an Office Building in an Extremely Hot and Cold Region," Sustainability, MDPI, vol. 16(2), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramkishore Singh & Dharam Buddhi & Samar Thapa & Chander Prakash & Rajesh Singh & Atul Sharma & Shane Sheoran & Kuldeep Kumar Saxena, 2022. "Sensitivity Analysis for Decisive Design Parameters for Energy and Indoor Visual Performances of a Glazed Façade Office Building," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    2. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    3. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
    4. Mechri, Houcem Eddine & Capozzoli, Alfonso & Corrado, Vincenzo, 2010. "USE of the ANOVA approach for sensitive building energy design," Applied Energy, Elsevier, vol. 87(10), pages 3073-3083, October.
    5. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    6. Yildiz, Yusuf & Korkmaz, Koray & Göksal Özbalta, Türkan & Durmus Arsan, Zeynep, 2012. "An approach for developing sensitive design parameter guidelines to reduce the energy requirements of low-rise apartment buildings," Applied Energy, Elsevier, vol. 93(C), pages 337-347.
    7. Chen, Xi & Yang, Hongxing & Wang, Yuanhao, 2017. "Parametric study of passive design strategies for high-rise residential buildings in hot and humid climates: miscellaneous impact factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 442-460.
    8. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "Impact of adjustment strategies on building design process in different climates oriented by multiple performance," Applied Energy, Elsevier, vol. 266(C).
    9. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    10. Pang, Zhihong & O'Neill, Zheng, 2018. "Uncertainty quantification and sensitivity analysis of the domestic hot water usage in hotels," Applied Energy, Elsevier, vol. 232(C), pages 424-442.
    11. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    12. Zhao, Zeming & Li, Hangxin & Wang, Shengwei, 2022. "Identification of the key design parameters of Zero/low energy buildings and the impacts of climate and building morphology," Applied Energy, Elsevier, vol. 328(C).
    13. Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
    14. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.
    15. Liang Zhao & Wei Zhang & Wenshun Wang, 2022. "BIM-Based Multi-Objective Optimization of Low-Carbon and Energy-Saving Buildings," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    16. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    17. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    18. Kirimtat, Ayca & Koyunbaba, Basak Kundakci & Chatzikonstantinou, Ioannis & Sariyildiz, Sevil, 2016. "Review of simulation modeling for shading devices in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 23-49.
    19. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    20. Van Groenendaal, Willem J. H. & Kleijnen, Jack P. C., 2002. "Deterministic versus stochastic sensitivity analysis in investment problems: An environmental case study," European Journal of Operational Research, Elsevier, vol. 141(1), pages 8-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:155-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.