IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp760-774.html
   My bibliography  Save this article

H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process

Author

Listed:
  • Moon, Dong-Kyu
  • Lee, Dong-Geun
  • Lee, Chang-Ha

Abstract

The integrated gasification combined cycle (IGCC) process, possessing high efficiency and environmental advantages, produces H2-rich syngas at high pressures (30–35bar) after capturing CO2. Since the syngas pressure is very high for conventional PSA processes, development of an efficient PSA process at the pressure conditions is required for H2 production. In this study, the H2 PSA process for IGCC syngas was developed experimentally and theoretically. Breakthrough and PSA experiments using activated carbon or activated carbon/zeolite LiX were performed at 25–35bar by using a five-component hydrogen mixture (H2:CO:N2:CO2:Ar=88:3:6:2:1mol%) as a simulated syngas. The overall PSA performance was evaluated in terms of the purity, recovery and productivity of H2 product. According to the results from using single or layered beds, the two-bed PSA process produced 99.77–99.95% H2 with 73.30–77.64% recovery experimentally. A four-layered bed PSA at 35bar was able to produce 99.97%-purity H2 with 79% recovery, and it contained Ar and N2 impurities. The quality of tail gas from the PSA process could be used for the gas turbine without losing H2 and CO. A rigorous mathematical model that included mass, energy, and momentum balances was employed to elucidate the dynamic behaviors and separation performance of the adsorption bed and PSA process.

Suggested Citation

  • Moon, Dong-Kyu & Lee, Dong-Geun & Lee, Chang-Ha, 2016. "H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process," Applied Energy, Elsevier, vol. 183(C), pages 760-774.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:760-774
    DOI: 10.1016/j.apenergy.2016.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191631340X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    2. Mansouri Majoumerd, Mohammad & Raas, Han & De, Sudipta & Assadi, Mohsen, 2014. "Estimation of performance variation of future generation IGCC with coal quality and gasification process – Simulation results of EU H2-IGCC project," Applied Energy, Elsevier, vol. 113(C), pages 452-462.
    3. Lee, Jae Chul & Lee, Hyeon Hui & Joo, Yong Jin & Lee, Chang Ha & Oh, Min, 2014. "Process simulation and thermodynamic analysis of an IGCC (integrated gasification combined cycle) plant with an entrained coal gasifier," Energy, Elsevier, vol. 64(C), pages 58-68.
    4. Melchior, Tobias & Madlener, Reinhard, 2012. "Economic evaluation of IGCC plants with hot gas cleaning," Applied Energy, Elsevier, vol. 97(C), pages 170-184.
    5. Siefert, Nicholas S. & Chang, Brian Y. & Litster, Shawn, 2014. "Exergy and economic analysis of a CaO-looping gasifier for IGFC–CCS and IGCC–CCS," Applied Energy, Elsevier, vol. 128(C), pages 230-245.
    6. Chen, Qin & Rao, Ashok & Samuelsen, Scott, 2015. "Coproduction of transportation fuels in advanced IGCCs via coal and biomass mixtures," Applied Energy, Elsevier, vol. 157(C), pages 851-860.
    7. Lee, Hyeon-Hui & Lee, Jae-Chul & Joo, Yong-Jin & Oh, Min & Lee, Chang-Ha, 2014. "Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process," Applied Energy, Elsevier, vol. 131(C), pages 425-440.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Woo-Sung & Oh, Hyun-Taek & Lee, Jae-Cheol & Oh, Min & Lee, Chang-Ha, 2019. "Performance analysis and carbon reduction assessment of an integrated syngas purification process for the co-production of hydrogen and power in an integrated gasification combined cycle plant," Energy, Elsevier, vol. 171(C), pages 910-927.
    2. Ahn, Ji Ho & Seo, Min Hyung & Kim, Tong Seop, 2021. "Efficiency maximization of a quadruple power generation system with zero carbon emission," Energy, Elsevier, vol. 226(C).
    3. Situmorang, Yohanes Andre & Zhao, Zhongkai & An, Ping & Yu, Tao & Rizkiana, Jenny & Abudula, Abuliti & Guan, Guoqing, 2020. "A novel system of biomass-based hydrogen production by combining steam bio-oil reforming and chemical looping process," Applied Energy, Elsevier, vol. 268(C).
    4. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    5. Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).
    6. Ahn, Ji Ho & Kim, Tong Seop, 2020. "Effect of oxygen supply method on the performance of a micro gas turbine-based triple combined cycle with oxy-combustion carbon capture," Energy, Elsevier, vol. 211(C).
    7. Xiao Li & Lingzhi Yang & Yong Hao, 2023. "Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture," Energies, MDPI, vol. 16(20), pages 1-16, October.
    8. Zhu, Xuancan & Shi, Yixiang & Li, Shuang & Cai, Ningsheng, 2018. "Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production," Applied Energy, Elsevier, vol. 229(C), pages 1061-1071.
    9. Jinsheng Xiao & Ang Mei & Wei Tao & Shuo Ma & Pierre Bénard & Richard Chahine, 2021. "Hydrogen Purification Performance Optimization of Vacuum Pressure Swing Adsorption on Different Activated Carbons," Energies, MDPI, vol. 14(9), pages 1-14, April.
    10. Zhang, Chao & Shen, Yuanhui & Zhang, Donghui & Tang, Zhongli & Li, Wenbin, 2022. "Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC," Energy, Elsevier, vol. 257(C).
    11. Sanchez, Nestor & Ruiz, Ruth & Rödl, Anne & Cobo, Martha, 2021. "Technical and environmental analysis on the power production from residual biomass using hydrogen as energy vector," Renewable Energy, Elsevier, vol. 175(C), pages 825-839.
    12. Slavomír Podolský & Miroslav Variny & Tomáš Kurák, 2023. "Carbon-Energy Impact Analysis of Heavy Residue Gasification Plant Integration into Oil Refinery," Resources, MDPI, vol. 12(6), pages 1-23, May.
    13. Subraveti, Sai Gokul & Pai, Kasturi Nagesh & Rajagopalan, Ashwin Kumar & Wilkins, Nicholas Stiles & Rajendran, Arvind & Jayaraman, Ambalavan & Alptekin, Gokhan, 2019. "Cycle design and optimization of pressure swing adsorption cycles for pre-combustion CO2 capture," Applied Energy, Elsevier, vol. 254(C).
    14. Xi, Han & Wu, Xiao & Chen, Xianhao & Sha, Peng, 2021. "Artificial intelligent based energy scheduling of steel mill gas utilization system towards carbon neutrality," Applied Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    2. Lee, Woo-Sung & Lee, Jae-Cheol & Oh, Hyun-Taek & Baek, Seung-Won & Oh, Min & Lee, Chang-Ha, 2017. "Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant," Energy, Elsevier, vol. 134(C), pages 731-742.
    3. Lee, Woo-Sung & Oh, Hyun-Taek & Lee, Jae-Cheol & Oh, Min & Lee, Chang-Ha, 2019. "Performance analysis and carbon reduction assessment of an integrated syngas purification process for the co-production of hydrogen and power in an integrated gasification combined cycle plant," Energy, Elsevier, vol. 171(C), pages 910-927.
    4. Yan, Pei & Zheng, Chenghang & Zhu, Weizhuo & Xu, Xi & Gao, Xiang & Luo, Zhongyang & Ni, Mingjiang & Cen, Kefa, 2016. "An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs," Applied Energy, Elsevier, vol. 164(C), pages 28-35.
    5. Zhang, Chao & Shen, Yuanhui & Zhang, Donghui & Tang, Zhongli & Li, Wenbin, 2022. "Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC," Energy, Elsevier, vol. 257(C).
    6. Chen, Shiyi & Lior, Noam & Xiang, Wenguo, 2015. "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, Elsevier, vol. 146(C), pages 298-312.
    7. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    8. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    9. Xu, Qilong & Wang, Shuai & Luo, Kun & Mu, Yanfei & Pan, Lu & Fan, Jianren, 2023. "Process modelling and optimization of a 250 MW IGCC system: ASU optimization and thermodynamic analysis," Energy, Elsevier, vol. 282(C).
    10. Meng, Xiuxia & Liu, Yongna & Yang, Naitao & Tan, Xiaoyao & Liu, Jian & Diniz da Costa, João C. & Liu, Shaomin, 2017. "Highly compact and robust hollow fiber solid oxide cells for flexible power generation and gas production," Applied Energy, Elsevier, vol. 205(C), pages 741-748.
    11. Zhong, Dong-Liang & Wang, Jia-Le & Lu, Yi-Yu & Li, Zheng & Yan, Jin, 2016. "Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation," Energy, Elsevier, vol. 102(C), pages 621-629.
    12. Nicholas S. Siefert & Sarah Narburgh & Yang Chen, 2016. "Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO 2 Capture," Energies, MDPI, vol. 9(9), pages 1-19, August.
    13. Aziz, Muhammad & Prawisudha, Pandji & Prabowo, Bayu & Budiman, Bentang Arief, 2015. "Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems," Applied Energy, Elsevier, vol. 139(C), pages 188-195.
    14. Zhou, Hua & Xie, Taili & You, Fengqi, 2018. "On-line simulation and optimization of a commercial-scale shell entrained-flow gasifier using a novel dynamic reduced order model," Energy, Elsevier, vol. 149(C), pages 516-534.
    15. Arroyave, Juan D. & Chejne, Farid & Mejía, Juan M. & Maya, Juan C., 2020. "Evaluation of CO2 production for enhanced oil recovery from four power plants," Energy, Elsevier, vol. 206(C).
    16. Oh, Hyun-Taek & Lee, Woo-Sung & Ju, Youngsan & Lee, Chang-Ha, 2019. "Performance evaluation and carbon assessment of IGCC power plant with coal quality," Energy, Elsevier, vol. 188(C).
    17. Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.
    18. Bassani, Andrea & Pirola, Carlo & Maggio, Enrico & Pettinau, Alberto & Frau, Caterina & Bozzano, Giulia & Pierucci, Sauro & Ranzi, Eliseo & Manenti, Flavio, 2016. "Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production," Applied Energy, Elsevier, vol. 184(C), pages 1284-1291.
    19. Obara, Shin'ya & Morel, Jorge & Okada, Masaki & Kobayashi, Kazuma, 2016. "Performance evaluation of an independent microgrid comprising an integrated coal gasification fuel cell combined cycle, large-scale photovoltaics, and a pumped-storage power station," Energy, Elsevier, vol. 116(P1), pages 78-93.
    20. Bernstein, Ronald & Madlener, Reinhard, 2011. "Responsiveness of Residential Electricity Demand in OECD Countries: A Panel Cointegation and Causality Analysis," FCN Working Papers 8/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:760-774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.