IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp1232-1241.html
   My bibliography  Save this article

A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst

Author

Listed:
  • Cai, Weizi
  • Zhou, Qian
  • Xie, Yongmin
  • Liu, Jiang
  • Long, Guohui
  • Cheng, Shuang
  • Liu, Meilin

Abstract

Biochar derived from orchid tree leaves is utilised as the fuel of a direct carbon solid oxide fuel cell (DC-SOFC), with yttrium stabilized zirconia (YSZ) as electrolyte and cermet of silver and gadolinium doped ceria (Ag-GDC) as the material of both cathode and anode, operating without any liquid medium or feeding gas. The performance of the DC-SOFC operated on the leaf char is higher than that operated on the best reported carbon fuel for DC-SOFCs, Fe-loaded activated carbon. XRD, Raman spectroscopy, SEM and EDX are applied to characterize the leaf char. It turns out that the leaf char is with porous structure and there is much Ca along with some K and Mg uniformly distributing in the leaf char. The effects of the naturally existing alkaline earth metal and alkaline metal and their distribution on the performance of the DC-SOFCs operated on the leaf char are analyzed in detail.

Suggested Citation

  • Cai, Weizi & Zhou, Qian & Xie, Yongmin & Liu, Jiang & Long, Guohui & Cheng, Shuang & Liu, Meilin, 2016. "A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst," Applied Energy, Elsevier, vol. 179(C), pages 1232-1241.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1232-1241
    DOI: 10.1016/j.apenergy.2016.07.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiao, Yong & Tian, Wenjuan & Chen, Huili & Shi, Huangang & Yang, Binbin & Li, Chao & Shao, Zongping & Zhu, Zhenping & Li, Si-Dian, 2015. "In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance," Applied Energy, Elsevier, vol. 141(C), pages 200-208.
    2. Xu, Xiaoyong & Zhou, Wei & Liang, Fengli & Zhu, Zhonghua, 2013. "A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell," Applied Energy, Elsevier, vol. 108(C), pages 402-409.
    3. Hao, Wenbin & He, Xiaojin & Mi, Yongli, 2014. "Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source," Applied Energy, Elsevier, vol. 135(C), pages 174-181.
    4. E. Perry Murray & T. Tsai & S. A. Barnett, 1999. "A direct-methane fuel cell with a ceria-based anode," Nature, Nature, vol. 400(6745), pages 649-651, August.
    5. Lahijani, Pooya & Zainal, Zainal Alimuddin & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2015. "Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 615-632.
    6. Ahn, Seong Yool & Eom, Seong Yong & Rhie, Young Hoon & Sung, Yon Mo & Moon, Cheor Eon & Choi, Gyung Min & Kim, Duck Jool, 2013. "Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system," Applied Energy, Elsevier, vol. 105(C), pages 207-216.
    7. Guo, Mingxin & Song, Weiping & Buhain, Jeremy, 2015. "Bioenergy and biofuels: History, status, and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 712-725.
    8. Rady, Adam C. & Giddey, Sarbjit & Kulkarni, Aniruddha & Badwal, Sukhvinder P.S. & Bhattacharya, Sankar & Ladewig, Bradley P., 2014. "Direct carbon fuel cell operation on brown coal," Applied Energy, Elsevier, vol. 120(C), pages 56-64.
    9. Guo, Liang & Calo, J.M. & Kearney, Clare & Grimshaw, Pengpeng, 2014. "The anodic reaction zone and performance of different carbonaceous fuels in a batch molten hydroxide direct carbon fuel cell," Applied Energy, Elsevier, vol. 129(C), pages 32-38.
    10. Brian C. H. Steele, 1999. "Running on natural gas," Nature, Nature, vol. 400(6745), pages 619-621, August.
    11. Seungdoo Park & John M. Vohs & Raymond J. Gorte, 2000. "Direct oxidation of hydrocarbons in a solid-oxide fuel cell," Nature, Nature, vol. 404(6775), pages 265-267, March.
    12. Brian C. H. Steele & Angelika Heinzel, 2001. "Materials for fuel-cell technologies," Nature, Nature, vol. 414(6861), pages 345-352, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
    2. Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
    3. Cai, Weizi & Cao, Dan & Zhou, Mingyang & Yan, Xiaomin & Li, Yuzhi & Wu, Zhen & Lü, Shengping & Mao, Caiyun & Xie, Yongmin & Zhao, Caiwen & Yu, Jialing & Ni, Meng & Liu, Jiang & Wang, Hailin, 2020. "Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells," Energy, Elsevier, vol. 211(C).
    4. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Li, Bangxin & Irvine, John T.S. & Ni, Jiupai & Ni, Chengsheng, 2022. "High-performance and durable alcohol-fueled symmetrical solid oxide fuel cell based on ferrite perovskite electrode," Applied Energy, Elsevier, vol. 306(PB).
    6. Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).
    7. Valentina Zubkova & Andrzej Strojwas & Marcin Bielecki, 2021. "Analysis of the Pyrolytic Behaviour of Birch, Maple, and Rowan Leaves," Energies, MDPI, vol. 14(8), pages 1-18, April.
    8. Mushtaq, Usman & Mehran, Muhammad Taqi & Kim, Sun-Kyoung & Lim, Tak-Hyoung & Naqvi, Syed Asad Ali & Lee, Jong-Won & Lee, Seung-Bok & Park, Seok-Joo & Song, Rak-Hyun, 2017. "Evaluation of steady-state characteristics for solid oxide carbon fuel cell short-stacks," Applied Energy, Elsevier, vol. 187(C), pages 886-898.
    9. Wu, Hao & Xiao, Jie & Zeng, Xiaoyuan & Li, Xue & Yang, Jing & Zou, Yuling & Liu, Sudongfang & Dong, Peng & Zhang, Yingjie & Liu, Jiang, 2019. "A high performance direct carbon solid oxide fuel cell – A green pathway for brown coal utilization," Applied Energy, Elsevier, vol. 248(C), pages 679-687.
    10. Chen, Qianyang & Qiu, Qianyuan & Yan, Xiaomin & Zhou, Mingyang & Zhang, Yapeng & Liu, Zhijun & Cai, Weizi & Wang, Wei & Liu, Jiang, 2020. "A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application," Applied Energy, Elsevier, vol. 278(C).
    11. Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Wang, Chaoqi & Lü, Zhe & Li, Jingwei & Cao, Zhiqun & Wei, Bo & Li, Huan & Shang, Minghao & Su, Chaoxiang, 2020. "Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell," Renewable Energy, Elsevier, vol. 158(C), pages 410-420.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
    2. Hao, Wenbin & He, Xiaojin & Mi, Yongli, 2014. "Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source," Applied Energy, Elsevier, vol. 135(C), pages 174-181.
    3. Qu, Jifa & Wang, Wei & Chen, Yubo & Deng, Xiang & Shao, Zongping, 2016. "Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures," Applied Energy, Elsevier, vol. 164(C), pages 563-571.
    4. Duan, Nan-Qi & Tan, Yuan & Yan, Dong & Jia, Lichao & Chi, Bo & Pu, Jian & Li, Jian, 2016. "Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode," Applied Energy, Elsevier, vol. 165(C), pages 983-989.
    5. Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Massimiliano Cimenti & Josephine M. Hill, 2009. "Direct Utilization of Liquid Fuels in SOFC for Portable Applications: Challenges for the Selection of Alternative Anodes," Energies, MDPI, vol. 2(2), pages 1-34, June.
    7. Sariboğa, Vedat & Öksüzömer, Faruk, 2012. "The investigation of active Ni/YSZ interlayer for Cu-based direct-methane solid oxide fuel cells," Applied Energy, Elsevier, vol. 93(C), pages 707-721.
    8. Xu, Han & Dang, Zheng, 2016. "Lattice Boltzmann modeling of carbon deposition in porous anode of a solid oxide fuel cell with internal reforming," Applied Energy, Elsevier, vol. 178(C), pages 294-307.
    9. Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
    10. Chen, Qianyang & Qiu, Qianyuan & Yan, Xiaomin & Zhou, Mingyang & Zhang, Yapeng & Liu, Zhijun & Cai, Weizi & Wang, Wei & Liu, Jiang, 2020. "A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application," Applied Energy, Elsevier, vol. 278(C).
    11. Cai, Weizi & Cao, Dan & Zhou, Mingyang & Yan, Xiaomin & Li, Yuzhi & Wu, Zhen & Lü, Shengping & Mao, Caiyun & Xie, Yongmin & Zhao, Caiwen & Yu, Jialing & Ni, Meng & Liu, Jiang & Wang, Hailin, 2020. "Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells," Energy, Elsevier, vol. 211(C).
    12. Gómez, Sergio Yesid & Hotza, Dachamir, 2016. "Current developments in reversible solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 155-174.
    13. Guo, Liang & Calo, J.M. & Kearney, Clare & Grimshaw, Pengpeng, 2014. "The anodic reaction zone and performance of different carbonaceous fuels in a batch molten hydroxide direct carbon fuel cell," Applied Energy, Elsevier, vol. 129(C), pages 32-38.
    14. Wang, Chaoqi & Lü, Zhe & Li, Jingwei & Cao, Zhiqun & Wei, Bo & Li, Huan & Shang, Minghao & Su, Chaoxiang, 2020. "Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell," Renewable Energy, Elsevier, vol. 158(C), pages 410-420.
    15. Jiao, Yong & Zhang, Liqin & An, Wenting & Zhou, Wei & Sha, Yujing & Shao, Zongping & Bai, Jianping & Li, Si-Dian, 2016. "Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane," Energy, Elsevier, vol. 113(C), pages 432-443.
    16. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    17. Yu, Fangyong & Xiao, Jie & Zhang, Yapeng & Cai, Weizi & Xie, Yongmin & Yang, Naitao & Liu, Jiang & Liu, Meilin, 2019. "New insights into carbon deposition mechanism of nickel/yttrium-stabilized zirconia cermet from methane by in situ investigation," Applied Energy, Elsevier, vol. 256(C).
    18. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
    19. Mohamad Fairus Rabuni & Tao Li & Mohd Hafiz Dzarfan Othman & Faidzul Hakim Adnan & Kang Li, 2023. "Progress in Solid Oxide Fuel Cells with Hydrocarbon Fuels," Energies, MDPI, vol. 16(17), pages 1-36, September.
    20. Fan, Liyuan & Li, Chao'en & van Biert, Lindert & Zhou, Shou-Han & Tabish, Asif Nadeem & Mokhov, Anatoli & Aravind, Purushothaman Vellayani & Cai, Weiwei, 2022. "Advances on methane reforming in solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:1232-1241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.