IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v177y2016icp309-322.html
   My bibliography  Save this article

Experimental study on a laboratory scale Totalized Hydrogen Energy Utilization System for solar photovoltaic application

Author

Listed:
  • Bhogilla, Satya Sekhar
  • Ito, Hiroshi
  • Kato, Atsushi
  • Nakano, Akihiro

Abstract

Most of the countries have increased the production of renewable energy to reduce pollution and their dependency on oil and natural gas. In case of Japan, solar power is increased rapidly, especially after the Fukushima Nuclear Accident. The load leveling and fluctuation absorption are the main bottlenecks to the integration of solar PV power into the future electricity system. Hydrogen is considered as an energy carrier in a future energy system based on renewable resources. Totalized Hydrogen Energy Utilization System (THEUS) consists of a unitized reversible fuel cell and a hydrogen storage tank. The main objective of this paper is to evaluate the THEUS operation and performance at different variations in solar photovoltaic (PV) power during a sunny day and a partly cloudy day and to characterize its dynamic response. Energy efficiency of the THEUS was evaluated in water electrolyzer and fuel cell mode operation.

Suggested Citation

  • Bhogilla, Satya Sekhar & Ito, Hiroshi & Kato, Atsushi & Nakano, Akihiro, 2016. "Experimental study on a laboratory scale Totalized Hydrogen Energy Utilization System for solar photovoltaic application," Applied Energy, Elsevier, vol. 177(C), pages 309-322.
  • Handle: RePEc:eee:appene:v:177:y:2016:i:c:p:309-322
    DOI: 10.1016/j.apenergy.2016.05.145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916307504
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Segurado, Raquel & Krajacic, Goran & Duic, Neven & Alves, Luís, 2011. "Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde," Applied Energy, Elsevier, vol. 88(2), pages 466-472, February.
    2. Kroniger, Daniel & Madlener, Reinhard, 2014. "Hydrogen storage for wind parks: A real options evaluation for an optimal investment in more flexibility," Applied Energy, Elsevier, vol. 136(C), pages 931-946.
    3. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    4. Tascikaraoglu, A. & Erdinc, O. & Uzunoglu, M. & Karakas, A., 2014. "An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units," Applied Energy, Elsevier, vol. 119(C), pages 445-453.
    5. Cao, Sunliang & Alanne, Kari, 2015. "Technical feasibility of a hybrid on-site H2 and renewable energy system for a zero-energy building with a H2 vehicle," Applied Energy, Elsevier, vol. 158(C), pages 568-583.
    6. Raj, Arun S. & Ghosh, Prakash C., 2012. "Standalone PV-diesel system vs. PV-H2 system: An economic analysis," Energy, Elsevier, vol. 42(1), pages 270-280.
    7. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "A feasibility study of a stand-alone hybrid solar–wind–battery system for a remote island," Applied Energy, Elsevier, vol. 121(C), pages 149-158.
    8. Beccali, M. & Brunone, S. & Finocchiaro, P. & Galletto, J.M., 2013. "Method for size optimisation of large wind–hydrogen systems with high penetration on power grids," Applied Energy, Elsevier, vol. 102(C), pages 534-544.
    9. Chua, K.J. & Yang, W.M. & Er, S.S. & Ho, C.A., 2014. "Sustainable energy systems for a remote island community," Applied Energy, Elsevier, vol. 113(C), pages 1752-1763.
    10. Raza, Syed Shabbar & Janajreh, Isam & Ghenai, Chaouki, 2014. "Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source," Applied Energy, Elsevier, vol. 136(C), pages 909-920.
    11. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2015. "Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration," Applied Energy, Elsevier, vol. 138(C), pages 685-694.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    2. Meschede, Henning & Holzapfel, Peter & Kadelbach, Florian & Hesselbach, Jens, 2016. "Classification of global island regarding the opportunity of using RES," Applied Energy, Elsevier, vol. 175(C), pages 251-258.
    3. Liwen Zhu & Jun He & Lixun He & Wentao Huang & Yanyang Wang & Zong Liu, 2022. "Optimal Operation Strategy of PV-Charging-Hydrogenation Composite Energy Station Considering Demand Response," Energies, MDPI, vol. 15(16), pages 1-23, August.
    4. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Nybø, Astrid, 2020. "Transitioning remote Arctic settlements to renewable energy systems – A modelling study of Longyearbyen, Svalbard," Applied Energy, Elsevier, vol. 258(C).
    5. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    6. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    7. Nistor, Silviu & Dave, Saraansh & Fan, Zhong & Sooriyabandara, Mahesh, 2016. "Technical and economic analysis of hydrogen refuelling," Applied Energy, Elsevier, vol. 167(C), pages 211-220.
    8. Locatelli, Giorgio & Palerma, Emanuele & Mancini, Mauro, 2015. "Assessing the economics of large Energy Storage Plants with an optimisation methodology," Energy, Elsevier, vol. 83(C), pages 15-28.
    9. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    10. Liu, Jia & Ma, Tao & Wu, Huijun & Yang, Hongxing, 2023. "Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles," Applied Energy, Elsevier, vol. 331(C).
    11. Darcovich, K. & Kenney, B. & MacNeil, D.D. & Armstrong, M.M., 2015. "Control strategies and cycling demands for Li-ion storage batteries in residential micro-cogeneration systems," Applied Energy, Elsevier, vol. 141(C), pages 32-41.
    12. Zhang, Hengxu & Cao, Yongji & Zhang, Yi & Terzija, Vladimir, 2018. "Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data," Applied Energy, Elsevier, vol. 216(C), pages 172-182.
    13. Mendoza-Vizcaino, Javier & Sumper, Andreas & Sudria-Andreu, Antoni & Ramirez, J.M., 2016. "Renewable technologies for generation systems in islands and their application to Cozumel Island, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 348-361.
    14. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    15. Drouineau, Mathilde & Maïzi, Nadia & Mazauric, Vincent, 2014. "Impacts of intermittent sources on the quality of power supply: The key role of reliability indicators," Applied Energy, Elsevier, vol. 116(C), pages 333-343.
    16. Petruschke, Philipp & Gasparovic, Goran & Voll, Philip & Krajačić, Goran & Duić, Neven & Bardow, André, 2014. "A hybrid approach for the efficient synthesis of renewable energy systems," Applied Energy, Elsevier, vol. 135(C), pages 625-633.
    17. Grüger, Fabian & Dylewski, Lucy & Robinius, Martin & Stolten, Detlef, 2018. "Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior," Applied Energy, Elsevier, vol. 228(C), pages 1540-1549.
    18. Assaf, Jihane & Shabani, Bahman, 2016. "Transient simulation modelling and energy performance of a standalone solar-hydrogen combined heat and power system integrated with solar-thermal collectors," Applied Energy, Elsevier, vol. 178(C), pages 66-77.
    19. Escalante Soberanis, M.A. & Mithrush, T. & Bassam, A. & Mérida, W., 2018. "A sensitivity analysis to determine technical and economic feasibility of energy storage systems implementation: A flow battery case study," Renewable Energy, Elsevier, vol. 115(C), pages 547-557.
    20. Li, Jianwei & Xiong, Rui & Yang, Qingqing & Liang, Fei & Zhang, Min & Yuan, Weijia, 2017. "Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system," Applied Energy, Elsevier, vol. 201(C), pages 257-269.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:177:y:2016:i:c:p:309-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.