IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v177y2016icp108-116.html
   My bibliography  Save this article

Techno-economic analysis of energy renovation measures for a district heated multi-family house

Author

Listed:
  • Gustafsson, Marcus
  • Gustafsson, Moa Swing
  • Myhren, Jonn Are
  • Bales, Chris
  • Holmberg, Sture

Abstract

Renovation of existing buildings is important in the work toward increased energy efficiency and reduced environmental impact. The present paper treats energy renovation measures for a Swedish district heated multi-family house, evaluated through dynamic simulation. Insulation of roof and façade, better insulating windows and flow-reducing water taps, in combination with different HVAC systems for recovery of heat from exhaust air, were assessed in terms of life cycle cost, discounted payback period, primary energy consumption, CO2 emissions and non-renewable energy consumption. The HVAC systems were based on the existing district heating substation and included mechanical ventilation with heat recovery and different configurations of exhaust air heat pump.

Suggested Citation

  • Gustafsson, Marcus & Gustafsson, Moa Swing & Myhren, Jonn Are & Bales, Chris & Holmberg, Sture, 2016. "Techno-economic analysis of energy renovation measures for a district heated multi-family house," Applied Energy, Elsevier, vol. 177(C), pages 108-116.
  • Handle: RePEc:eee:appene:v:177:y:2016:i:c:p:108-116
    DOI: 10.1016/j.apenergy.2016.05.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916307061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.05.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gadd, Henrik & Werner, Sven, 2013. "Daily heat load variations in Swedish district heating systems," Applied Energy, Elsevier, vol. 106(C), pages 47-55.
    2. Åberg, M. & Henning, D., 2011. "Optimisation of a Swedish district heating system with reduced heat demand due to energy efficiency measures in residential buildings," Energy Policy, Elsevier, vol. 39(12), pages 7839-7852.
    3. Difs, Kristina & Bennstam, Marcus & Trygg, Louise & Nordenstam, Lena, 2010. "Energy conservation measures in buildings heated by district heating – A local energy system perspective," Energy, Elsevier, vol. 35(8), pages 3194-3203.
    4. Gadd, Henrik & Werner, Sven, 2014. "Achieving low return temperatures from district heating substations," Applied Energy, Elsevier, vol. 136(C), pages 59-67.
    5. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    6. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2014. "Effects of heat and electricity saving measures in district-heated multistory residential buildings," Applied Energy, Elsevier, vol. 118(C), pages 57-67.
    7. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    8. Brand, Marek & Svendsen, Svend, 2013. "Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment," Energy, Elsevier, vol. 62(C), pages 311-319.
    9. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
    10. Lundström, Lukas & Wallin, Fredrik, 2016. "Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system," Applied Energy, Elsevier, vol. 161(C), pages 290-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arghand, Taha & Javed, Saqib & Dalenbäck, Jan-Olof, 2023. "Combining direct ground cooling with ground-source heat pumps and district heating: Energy and economic analysis," Energy, Elsevier, vol. 270(C).
    2. Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
    3. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    4. Moa Swing Gustafsson & Jonn Are Myhren & Erik Dotzauer & Marcus Gustafsson, 2019. "Life Cycle Cost of Building Energy Renovation Measures, Considering Future Energy Production Scenarios," Energies, MDPI, vol. 12(14), pages 1-15, July.
    5. Zhu, Kai & Li, Xueqiang & Campana, Pietro Elia & Li, Hailong & Yan, Jinyue, 2018. "Techno-economic feasibility of integrating energy storage systems in refrigerated warehouses," Applied Energy, Elsevier, vol. 216(C), pages 348-357.
    6. Tina Lidberg & Thomas Olofsson & Louise Ödlund, 2019. "Impact of Domestic Hot Water Systems on District Heating Temperatures," Energies, MDPI, vol. 12(24), pages 1-14, December.
    7. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
    8. Sana Sayadi & Jan Akander & Abolfazl Hayati & Mattias Gustafsson & Mathias Cehlin, 2023. "Comparison of Space Cooling Systems from Energy and Economic Perspectives for a Future City District in Sweden," Energies, MDPI, vol. 16(9), pages 1-22, April.
    9. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Gaur, Ankita Singh & Fitiwi, Desta Z. & Lynch, Muireann & Longoria, Genaro, 2022. "Implications of heating sector electrification on the Irish power system in view of the Climate Action Plan," Energy Policy, Elsevier, vol. 168(C).
    11. Lidberg, T. & Gustafsson, M. & Myhren, J.A. & Olofsson, T. & Ödlund (former Trygg), L., 2018. "Environmental impact of energy refurbishment of buildings within different district heating systems," Applied Energy, Elsevier, vol. 227(C), pages 231-238.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    2. Antoine Reguis & Behrang Vand & John Currie, 2021. "Challenges for the Transition to Low-Temperature Heat in the UK: A Review," Energies, MDPI, vol. 14(21), pages 1-26, November.
    3. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    4. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
    5. Delmastro, C. & Martinsson, F. & Dulac, J. & Corgnati, S.P., 2017. "Sustainable urban heat strategies: Perspectives from integrated district energy choices and energy conservation in buildings. Case studies in Torino and Stockholm," Energy, Elsevier, vol. 138(C), pages 1209-1220.
    6. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    7. Gustafsson, Mattias & Rönnelid, Mats & Trygg, Louise & Karlsson, Björn, 2016. "CO2 emission evaluation of energy conserving measures in buildings connected to a district heating system – Case study of a multi-dwelling building in Sweden," Energy, Elsevier, vol. 111(C), pages 341-350.
    8. Welsch, Bastian & Göllner-Völker, Laura & Schulte, Daniel O. & Bär, Kristian & Sass, Ingo & Schebek, Liselotte, 2018. "Environmental and economic assessment of borehole thermal energy storage in district heating systems," Applied Energy, Elsevier, vol. 216(C), pages 73-90.
    9. Delmastro, Chiara & Gargiulo, Maurizio, 2020. "Capturing the long-term interdependencies between building thermal energy supply and demand in urban planning strategies," Applied Energy, Elsevier, vol. 268(C).
    10. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    11. Paiho, Satu & Reda, Francesco, 2016. "Towards next generation district heating in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 915-924.
    12. Lidberg, T. & Gustafsson, M. & Myhren, J.A. & Olofsson, T. & Ödlund (former Trygg), L., 2018. "Environmental impact of energy refurbishment of buildings within different district heating systems," Applied Energy, Elsevier, vol. 227(C), pages 231-238.
    13. Shamshirband, Shahaboddin & Petković, Dalibor & Enayatifar, Rasul & Hanan Abdullah, Abdul & Marković, Dušan & Lee, Malrey & Ahmad, Rodina, 2015. "Heat load prediction in district heating systems with adaptive neuro-fuzzy method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 760-767.
    14. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    15. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    17. Dodoo, Ambrose & Gustavsson, Leif & Le Truong, Nguyen, 2018. "Primary energy benefits of cost-effective energy renovation of a district heated multi-family building under different energy supply systems," Energy, Elsevier, vol. 143(C), pages 69-90.
    18. Østergaard, Dorte Skaarup & Smith, Kevin Michael & Tunzi, Michele & Svendsen, Svend, 2022. "Low-temperature operation of heating systems to enable 4th generation district heating: A review," Energy, Elsevier, vol. 248(C).
    19. Volkova, Anna & Mašatin, Vladislav & Siirde, Andres, 2018. "Methodology for evaluating the transition process dynamics towards 4th generation district heating networks," Energy, Elsevier, vol. 150(C), pages 253-261.
    20. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2015. "Renewable-based heat supply of multi-apartment buildings with varied heat demands," Energy, Elsevier, vol. 93(P1), pages 1053-1062.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:177:y:2016:i:c:p:108-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.