IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v138y2015icp258-275.html
   My bibliography  Save this article

Energy saving potential of various air-side economizers in a modular data center

Author

Listed:
  • Ham, Sang-Woo
  • Kim, Min-Hwi
  • Choi, Byung-Nam
  • Jeong, Jae-Weon

Abstract

With the recent development of the IT technology, the demand for data centers has significantly increased, and modular data centers have attracted considerable attention because of their excellent stability, scalability, and economic feasibility. This research quantitatively analyzed the applicability of various air-side economizers and their energy-saving potential in modular data centers. A detailed cooling load estimation process was established for modular data centers, and annual cooling energy simulations were carried out using various air-side economizers. The various air-side economizers yielded cooling coil load savings of 76–99% in comparison to conventional cooling systems in data centers, and the total cooling energy savings of the economizers ranged from 47.5% to 67.2%. Indirect air-side economizers with high-effectiveness heat exchangers were found to yield significant energy saving (63.6%) and have simple system configurations.

Suggested Citation

  • Ham, Sang-Woo & Kim, Min-Hwi & Choi, Byung-Nam & Jeong, Jae-Weon, 2015. "Energy saving potential of various air-side economizers in a modular data center," Applied Energy, Elsevier, vol. 138(C), pages 258-275.
  • Handle: RePEc:eee:appene:v:138:y:2015:i:c:p:258-275
    DOI: 10.1016/j.apenergy.2014.10.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914011167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.10.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Somers, C. & Mortazavi, A. & Hwang, Y. & Radermacher, R. & Rodgers, P. & Al-Hashimi, S., 2011. "Modeling water/lithium bromide absorption chillers in ASPEN Plus," Applied Energy, Elsevier, vol. 88(11), pages 4197-4205.
    2. Kohl, Thomas & Laukkanen, Timo & Järvinen, Mika & Fogelholm, Carl-Johan, 2013. "Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant," Applied Energy, Elsevier, vol. 107(C), pages 124-134.
    3. Garimella, Suresh V. & Persoons, Tim & Weibel, Justin & Yeh, Lian-Tuu, 2013. "Technological drivers in data centers and telecom systems: Multiscale thermal, electrical, and energy management," Applied Energy, Elsevier, vol. 107(C), pages 66-80.
    4. Sun, Xiaoqin & Zhang, Quan & Medina, Mario A. & Liu, Yingjun & Liao, Shuguang, 2014. "A study on the use of phase change materials (PCMs) in combination with a natural cold source for space cooling in telecommunications base stations (TBSs) in China," Applied Energy, Elsevier, vol. 117(C), pages 95-103.
    5. Siriwardana, Jayantha & Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Potential of air-side economizers for data center cooling: A case study for key Australian cities," Applied Energy, Elsevier, vol. 104(C), pages 207-219.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    3. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    4. Li, Jian & Jurasz, Jakub & Li, Hailong & Tao, Wen-Quan & Duan, Yuanyuan & Yan, Jinyue, 2020. "A new indicator for a fair comparison on the energy performance of data centers," Applied Energy, Elsevier, vol. 276(C).
    5. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    6. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    7. Heran Jing & Zhenhua Quan & Yaohua Zhao & Lincheng Wang & Ruyang Ren & Ruixue Dong & Yuting Wu, 2022. "Experimental Investigation of Heat Transfer and Flow Characteristics of Split Natural Cooling System for Data Center Based on Micro Heat Pipe Array," Energies, MDPI, vol. 15(12), pages 1-22, June.
    8. Habibi Khalaj, Ali & Scherer, Thomas & K. Halgamuge, Saman, 2016. "Energy, environmental and economical saving potential of data centers with various economizers across Australia," Applied Energy, Elsevier, vol. 183(C), pages 1528-1549.
    9. Yang, Tian-Jian & Zhang, Yue-Jun & Tang, Su & Zhang, Jing, 2016. "How to assess and manage energy performance of numerous telecommunication base stations: Evidence in China," Applied Energy, Elsevier, vol. 164(C), pages 436-445.
    10. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    11. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    12. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    13. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    15. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    16. Liu, Lijun & Zhang, Quan & Zou, Sikai & Du, Sheng & Meng, Fanxi, 2023. "Experimental study on dynamic thermal characteristics of novel thermosyphon with latent thermal energy storage condenser," Energy, Elsevier, vol. 282(C).
    17. Chen, Xiaoming & Zhang, Quan & Zhai, Zhiqiang John & Ma, Xiaowei, 2019. "Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings," Renewable Energy, Elsevier, vol. 138(C), pages 39-53.
    18. Costa Climent, Ricardo & Haftor, Darek M., 2021. "Business model theory-based prediction of digital technology use: An empirical assessment," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    19. Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
    20. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:138:y:2015:i:c:p:258-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.