IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v122y2014icp310-320.html
   My bibliography  Save this article

Air-fraction modeling for simultaneous Diesel engine NOx and PM emissions control during active DPF regenerations

Author

Listed:
  • Chen, Pingen
  • Wang, Junmin

Abstract

This study develops a control-oriented air-fraction model which can accurately predict the air-fraction dynamics for a Diesel engine and the coupled aftertreatment system (mainly Diesel oxidation catalyst (DOC)) during active DPF regenerations. NOx and particulate matter (PM) emissions are the two main concerns for modern Diesel engine development. Diesel particulate filters (DPFs) have become a standard device for reducing the PM emissions from Diesel engine powertrains. To maintain high filtration efficiencies and avoid high back pressures, active DPF regenerations have to be implemented periodically by significantly elevating the exhaust gas temperatures. However, during active DPF regenerations, the selective catalytic reduction (SCR) deNOx performance may be significantly decreased, while the high temperature durability and total hydrocarbon (THC) poisoning of SCRs may be potential issues. To simultaneously meet the NOx emission standard, high-pressure loop EGR needs to be applied. Since in-cylinder NOx reduction relies heavily on the in-cylinder oxygen content, an accurate air-fraction model is necessary, and the effects of recycled THC and CO emissions should be considered. The developed air-fraction model has been experimentally validated to show its capability of capturing the actual air fraction dynamics accurately. Such a model can be instrumental in simultaneous NOx and PM emission control during active DPF regenerations and in advanced combustion mode control.

Suggested Citation

  • Chen, Pingen & Wang, Junmin, 2014. "Air-fraction modeling for simultaneous Diesel engine NOx and PM emissions control during active DPF regenerations," Applied Energy, Elsevier, vol. 122(C), pages 310-320.
  • Handle: RePEc:eee:appene:v:122:y:2014:i:c:p:310-320
    DOI: 10.1016/j.apenergy.2014.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914001676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.02.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Jibing & Li, Dinggen, 2016. "Theoretical analysis and experimental confirmation of exhaust temperature control for diesel vehicle NOx emissions reduction," Applied Energy, Elsevier, vol. 174(C), pages 232-244.
    2. Zhao, Xiaohuan & Zuo, Hongyan & Jia, Guohai, 2022. "Effect analysis on pressure sensitivity performance of diesel particulate filter for heavy-duty truck diesel engine by the nonlinear soot regeneration combustion pressure model," Energy, Elsevier, vol. 257(C).
    3. Lao, Chung Ting & Akroyd, Jethro & Eaves, Nickolas & Smith, Alastair & Morgan, Neal & Nurkowski, Daniel & Bhave, Amit & Kraft, Markus, 2020. "Investigation of the impact of the configuration of exhaust after-treatment system for diesel engines," Applied Energy, Elsevier, vol. 267(C).
    4. Chen, Chia-Yang & Lee, Wen-Jhy & Wang, Lin-Chi & Chang, Yu-Cheng & Yang, Hsi-Hsien & Young, Li-Hao & Lu, Jau-Huai & Tsai, Ying I. & Cheng, Man-Ting & Mwangi, John Kennedy, 2017. "Impact of high soot-loaded and regenerated diesel particulate filters on the emissions of persistent organic pollutants from a diesel engine fueled with waste cooking oil-based biodiesel," Applied Energy, Elsevier, vol. 191(C), pages 35-43.
    5. Zhang, Bin & E, Jiaqiang & Gong, Jinke & Yuan, Wenhua & Zuo, Wei & Li, Yu & Fu, Jun, 2016. "Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process," Applied Energy, Elsevier, vol. 181(C), pages 14-28.
    6. E, Jiaqiang & Zhao, Xiaohuan & Liu, Guanlin & Zhang, Bin & Zuo, Qingsong & Wei, Kexiang & Li, Hongmei & Han, Dandan & Gong, Jinke, 2019. "Effects analysis on optimal microwave energy consumption in the heating process of composite regeneration for the diesel particulate filter," Applied Energy, Elsevier, vol. 254(C).
    7. Zhang, Jun & Wong, Victor W. & Shuai, Shijin & Chen, Yu & Sappok, Alexander, 2018. "Quantitative estimation of the impact of ash accumulation on diesel particulate filter related fuel penalty for a typical modern on-road heavy-duty diesel engine," Applied Energy, Elsevier, vol. 229(C), pages 1010-1023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:122:y:2014:i:c:p:310-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.