IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp924-931.html
   My bibliography  Save this article

Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system

Author

Listed:
  • Xu, Xiaojie
  • Ye, Hong
  • Xu, Yexin
  • Shen, Mingrong
  • Zhang, Xiaojing
  • Wu, Xi

Abstract

An experimental thermophotovoltaic (TPV) system with a cylindrical-geometry radiator was established to test the output performances of modules under different conditions. The results demonstrate that the output performance of a cell module decreases when the combustion power increases because of the uneven temperature of the radiator or cells. On this basis, a theoretical model for a TPV system was constructed to compare the performance under different conditions of the series-connected (SC) module and the parallel-connected (PC) module, and was verified by the experimental results. The influences of the temperature gradient of the radiator or the cell module, and the series and shunt resistance of the TPV cell on the module performance were analyzed in detail. The results demonstrate that the PC module can effectively reduce the mismatch loss of output power caused by the uneven radiator temperature. The PC module, for instance, has a maximum output power of 2.54 times higher than that of the SC module when the radiator temperature difference is 500K. However, the output performance of the module connected in series is superior to the PC module while the cell temperature is non-uniform. The output power of the SC module is 9.93% higher than that of the PC module at the cell temperature difference of 125K. The short circuit current of the SC module is sensitive to the series and shunt resistance if the radiator temperature distribution is non-uniform. As the shunt resistance falls from ∞ to 0.5Ω, the current varies from 1.757A to 4.488A when the radiator temperature difference is 500K. As the series resistance rises from 6.6mΩ to 0.5Ω, this current falls from 2.132A to 1.654A under the same condition. This research also shows that the fill factor is not appropriate to evaluate the output performance of a TPV system. Furthermore, the theoretical model developed in this study is used to analyze and optimize the experimental TPV system, and consequently the output powers under two different conditions are enhanced by 20.24% and 33.99% respectively when a module is connected in parallel.

Suggested Citation

  • Xu, Xiaojie & Ye, Hong & Xu, Yexin & Shen, Mingrong & Zhang, Xiaojing & Wu, Xi, 2014. "Experimental and theoretical analysis of cell module output performance for a thermophotovoltaic system," Applied Energy, Elsevier, vol. 113(C), pages 924-931.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:924-931
    DOI: 10.1016/j.apenergy.2013.08.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913006648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    2. Tobler, W.J. & Durisch, W., 2008. "High-performance selective Er-doped YAG emitters for thermophotovoltaics," Applied Energy, Elsevier, vol. 85(6), pages 483-493, June.
    3. Chou, S.K. & Yang, W.M. & Li, J. & Li, Z.W., 2010. "Porous media combustion for micro thermophotovoltaic system applications," Applied Energy, Elsevier, vol. 87(9), pages 2862-2867, September.
    4. Qiu, K. & Hayden, A.C.S., 2012. "Development of a novel cascading TPV and TE power generation system," Applied Energy, Elsevier, vol. 91(1), pages 304-308.
    5. Xuan, Yimin & Chen, Xue & Han, Yuge, 2011. "Design and analysis of solar thermophotovoltaic systems," Renewable Energy, Elsevier, vol. 36(1), pages 374-387.
    6. Yang, Wenming & Chou, Siawkiang & Chua, Kianjon & An, Hui & Karthikeyan, Kumarasamy & Zhao, Xing, 2012. "An advanced micro modular combustor-radiator with heat recuperation for micro-TPV system application," Applied Energy, Elsevier, vol. 97(C), pages 749-753.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, K. & Hayden, A.C.S., 2014. "Implementation of a TPV integrated boiler for micro-CHP in residential buildings," Applied Energy, Elsevier, vol. 134(C), pages 143-149.
    2. Zhang, Chao & Tang, Liangliang & Liu, Yan & Liu, Zhuming & Liu, Wei & Qiu, Kuanrong, 2020. "A novel thermophotovoltaic optical cavity for improved irradiance uniformity and system performance," Energy, Elsevier, vol. 195(C).
    3. Shakouri, Mahmoud & Lee, Hyun Woo & Kim, Yong-Woo, 2017. "A probabilistic portfolio-based model for financial valuation of community solar," Applied Energy, Elsevier, vol. 191(C), pages 709-726.
    4. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Attolini, G. & Bosi, M. & Ferrari, C. & Melino, F., 2013. "Design guidelines for thermo-photo-voltaic generator: The critical role of the emitter size," Applied Energy, Elsevier, vol. 103(C), pages 618-626.
    2. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    3. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    4. Qiu, K. & Hayden, A.C.S., 2014. "Implementation of a TPV integrated boiler for micro-CHP in residential buildings," Applied Energy, Elsevier, vol. 134(C), pages 143-149.
    5. Zhang, Chao & Tang, Liangliang & Liu, Yan & Liu, Zhuming & Liu, Wei & Qiu, Kuanrong, 2020. "A novel thermophotovoltaic optical cavity for improved irradiance uniformity and system performance," Energy, Elsevier, vol. 195(C).
    6. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    7. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    8. Alipoor, Alireza & Saidi, Mohammad Hassan, 2017. "Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator," Applied Energy, Elsevier, vol. 199(C), pages 382-399.
    9. Daneshvar, Hoofar & Prinja, Rajiv & Kherani, Nazir P., 2015. "Thermophotovoltaics: Fundamentals, challenges and prospects," Applied Energy, Elsevier, vol. 159(C), pages 560-575.
    10. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    11. Guggilla, Bhanuprakash Reddy & Rusted, Alexander & Bakrania, Smitesh, 2019. "Platinum nanoparticle catalysis of methanol for thermoelectric power generation," Applied Energy, Elsevier, vol. 237(C), pages 155-162.
    12. Xie, Bo & Peng, Qingguo & Yang, Wenming & Li, Shaobo & E, Jiaqiang & Li, Zhenwei & Tao, Meng & Zhang, Ansi, 2022. "Effect of pins and exit-step on thermal performance and energy efficiency of hydrogen-fueled combustion for micro-thermophotovoltaic," Energy, Elsevier, vol. 239(PD).
    13. Bitnar, Bernd & Durisch, Wilhelm & Holzner, Reto, 2013. "Thermophotovoltaics on the move to applications," Applied Energy, Elsevier, vol. 105(C), pages 430-438.
    14. Hiranandani, Karan & Aravind, B. & Ratna Kishore, V. & Kumar, Sudarshan, 2020. "Development of a numerical model for performance prediction of an integrated microcombustor-thermoelectric power generator," Energy, Elsevier, vol. 192(C).
    15. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    16. Wang, Yu & Lou, Yi-yi, 2015. "Radiant thermal conversion in 0.53 eV GaInAsSb thermophotovoltaic diode," Renewable Energy, Elsevier, vol. 75(C), pages 8-13.
    17. Rodrigo, P. & Gutiérrez, S. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2015. "A methodology for the electrical characterization of shaded high concentrator photovoltaic modules," Energy, Elsevier, vol. 89(C), pages 768-777.
    18. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    19. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    20. Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:924-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.