IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp300-312.html
   My bibliography  Save this article

Electrical, thermal and structural performance of a cooled PV module: Transient analysis using a multiphysics model

Author

Listed:
  • Siddiqui, M.U.
  • Arif, A.F.M.

Abstract

The main performance metric of any PV device is its electrical power output. But the ability to predict its thermal and structural response under different environmental conditions are also important in order to estimate its overall performance and for useful life prediction and reliability analysis. In the current work, the development of a multiphysics model is presented which is capable of estimating the three dimensional thermal and structural performance as well as the electrical performance of a PV module under given meteorological conditions. The model is also capable of including the effect of module cooling. The thermal modeling has been carried out in ANSYS CFX CFD environment, the structural modeling has been done in ANSYS Mechanical FEA code and the electrical modeling has been developed in MATLAB environment. The electrical model used is an improved seven-parameter electric circuit model which is capable of better simulating the electrical performance of the module at low irradiance and high temperature conditions. A coupling methodology to include the effect of electrical performance of the PV module in the thermal model inside the CFD environment has also been presented in the paper. Using the developed model, the electrical, thermal and structural performance of a PV module with and without cooling has been analyzed for four different days representing different environmental conditions at Jeddah, Saudi Arabia.

Suggested Citation

  • Siddiqui, M.U. & Arif, A.F.M., 2013. "Electrical, thermal and structural performance of a cooled PV module: Transient analysis using a multiphysics model," Applied Energy, Elsevier, vol. 112(C), pages 300-312.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:300-312
    DOI: 10.1016/j.apenergy.2013.06.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005370
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.06.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    2. Amrizal, N. & Chemisana, D. & Rosell, J.I., 2013. "Hybrid photovoltaic–thermal solar collectors dynamic modeling," Applied Energy, Elsevier, vol. 101(C), pages 797-807.
    3. Amori, Karima E. & Taqi Al-Najjar, Hussein M., 2012. "Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq," Applied Energy, Elsevier, vol. 98(C), pages 384-395.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanmugam, Mathiyazhagan & Maganti, Lakshmi Sirisha, 2023. "Improvement of uniformity of irradiance on truncated compound parabolic concentrator by introducing the homogenizer ratio," Renewable Energy, Elsevier, vol. 204(C), pages 580-592.
    2. Osma-Pinto, German & Ordóñez-Plata, Gabriel, 2020. "Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system," Renewable Energy, Elsevier, vol. 152(C), pages 1041-1054.
    3. Pathak, M.J.M. & Sanders, P.G. & Pearce, J.M., 2014. "Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems," Applied Energy, Elsevier, vol. 120(C), pages 115-124.
    4. Castanheira, André F.A. & Fernandes, João F.P. & Branco, P.J. Costa, 2018. "Demonstration project of a cooling system for existing PV power plants in Portugal," Applied Energy, Elsevier, vol. 211(C), pages 1297-1307.
    5. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    6. Divine Atsu & Alok Dhaundiyal, 2019. "Effect of Ambient Parameters on the Temperature Distribution of Photovoltaic (PV) Modules," Resources, MDPI, vol. 8(2), pages 1-12, June.
    7. Zhou, Jicheng & Zhang, Zhe & Ke, Haoyun, 2019. "PV module temperature distribution with a novel segmented solar cell absorbance model," Renewable Energy, Elsevier, vol. 134(C), pages 1071-1080.
    8. Radwan, Ali & Ahmed, Mahmoud, 2017. "The influence of microchannel heat sink configurations on the performance of low concentrator photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 594-611.
    9. Bevilacqua, Piero & Perrella, Stefania & Bruno, Roberto & Arcuri, Natale, 2021. "An accurate thermal model for the PV electric generation prediction: long-term validation in different climatic conditions," Renewable Energy, Elsevier, vol. 163(C), pages 1092-1112.
    10. Li, Fuxiang & Wu, Wei, 2022. "Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis," Applied Energy, Elsevier, vol. 319(C).
    11. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    12. Imtiaz Hussain, M. & Lee, Gwi Hyun, 2015. "Experimental and numerical studies of a U-shaped solar energy collector to track the maximum CPV/T system output by varying the flow rate," Renewable Energy, Elsevier, vol. 76(C), pages 735-742.
    13. Rejeb, Oussama & Gaillard, Leon & Giroux-Julien, Stéphanie & Ghenai, Chaouki & Jemni, Abdelmajid & Bettayeb, Maamar & Menezo, Christophe, 2020. "Novel solar PV/Thermal collector design for the enhancement of thermal and electrical performances," Renewable Energy, Elsevier, vol. 146(C), pages 610-627.
    14. Kandil, A.A. & Awad, Mohamed M. & Sultan, Gamal I. & Salem, Mohamed S., 2022. "Investigating the performance characteristics of low concentrated photovoltaic systems utilizing a beam splitting device under variable cutoff wavelengths," Renewable Energy, Elsevier, vol. 196(C), pages 375-389.
    15. Li, Qingxiang & Zhu, Li & Sun, Yong & Lu, Lin & Yang, Yang, 2020. "Performance prediction of Building Integrated Photovoltaics under no-shading, shading and masking conditions using a multi-physics model," Energy, Elsevier, vol. 213(C).
    16. Aly, Shahzada Pamir & Ahzi, Said & Barth, Nicolas, 2019. "An adaptive modelling technique for parameters extraction of photovoltaic devices under varying sunlight and temperature conditions," Applied Energy, Elsevier, vol. 236(C), pages 728-742.
    17. Nivelle, Philippe & Tsanakas, John A. & Poortmans, Jef & Daenen, Michaël, 2021. "Stress and strain within photovoltaic modules using the finite element method: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    2. Siddiqui, M.U. & Siddiqui, Osman K. & Al-Sarkhi, A. & Arif, A.F.M. & Zubair, Syed M., 2019. "A novel heat exchanger design procedure for photovoltaic panel cooling application: An analytical and experimental evaluation," Applied Energy, Elsevier, vol. 239(C), pages 41-56.
    3. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    4. Byeong-Hwa An & Kwang-Hwan Choi & Hwi-Ung Choi, 2022. "Influence of Triangle-Shaped Obstacles on the Energy and Exergy Performance of an Air-Cooled Photovoltaic Thermal (PVT) Collector," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    5. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    7. Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
    8. Hao, Wengang & Lu, Yifeng & Lai, Yanhua & Yu, Hongwen & Lyu, Mingxin, 2018. "Research on operation strategy and performance prediction of flat plate solar collector with dual-function for drying agricultural products," Renewable Energy, Elsevier, vol. 127(C), pages 685-696.
    9. del Amo, Alejandro & Martínez-Gracia, Amaya & Bayod-Rújula, Angel A. & Antoñanzas, Javier, 2017. "An innovative urban energy system constituted by a photovoltaic/thermal hybrid solar installation: Design, simulation and monitoring," Applied Energy, Elsevier, vol. 186(P2), pages 140-151.
    10. Pathak, M.J.M. & Sanders, P.G. & Pearce, J.M., 2014. "Optimizing limited solar roof access by exergy analysis of solar thermal, photovoltaic, and hybrid photovoltaic thermal systems," Applied Energy, Elsevier, vol. 120(C), pages 115-124.
    11. Hwi-Ung Choi & Kwang-Hwan Choi, 2022. "Performance Evaluation of PVT Air Collector Coupled with a Triangular Block in Actual Climate Conditions in Korea," Energies, MDPI, vol. 15(11), pages 1-12, June.
    12. Chen, Hongbing & Zhang, Lei & Jie, Pengfei & Xiong, Yaxuan & Xu, Peng & Zhai, Huixing, 2017. "Performance study of heat-pipe solar photovoltaic/thermal heat pump system," Applied Energy, Elsevier, vol. 190(C), pages 960-980.
    13. Herrando, María & Markides, Christos N. & Hellgardt, Klaus, 2014. "A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance," Applied Energy, Elsevier, vol. 122(C), pages 288-309.
    14. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    15. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    16. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    17. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    18. Imtiaz Hussain, M. & Lee, Gwi Hyun, 2015. "Experimental and numerical studies of a U-shaped solar energy collector to track the maximum CPV/T system output by varying the flow rate," Renewable Energy, Elsevier, vol. 76(C), pages 735-742.
    19. Jarimi, Hasila & Al-Waeli, Ali H.A. & Razak, Tajul Rosli & Abu Bakar, Mohd Nazari & Fazlizan, Ahmad & Ibrahim, Adnan & Sopian, Kamaruzzaman, 2022. "Neural network modelling and performance estimation of dual-fluid photovoltaic thermal solar collectors in tropical climate conditions," Renewable Energy, Elsevier, vol. 197(C), pages 1009-1019.
    20. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:300-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.