IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v102y2013icp336-346.html
   My bibliography  Save this article

Dynamic modeling of a SI/HCCI free-piston engine generator with electric mechanical valves

Author

Listed:
  • Chiang, Chia-Jui
  • Yang, Jing-Long
  • Lan, Shao-Ya
  • Shei, Tsung-Wei
  • Chiang, Wen-Shu
  • Chen, Bo-Liang

Abstract

For the purpose of model-based analysis and control design, a dynamic physics-based model for free-piston engine generator (FPEG) is developed in this paper. The physics-based model contains 17 states, which include piston dynamics, alternator current, runners and cylinder gas filling dynamics and thermal dynamics. Homogeneous charge compression ignition (HCCI) combustion is employed for better efficiency and reduced emissions, whereas spark ignition (SI) combustion can be used for quick start of the FPEG and higher power demand. Equipped with electric mechanical valves (EMVs) and direct injection, the free-piston engine generator is deemed to achieve optimized and clean combustion. Key features in this dynamic model include the runners and cylinder filling dynamics and cycle-to-cycle coupling between the piston motion and combustion process. Simulation results demonstrate that during a transition from SI to HCCI mode, the scavenging process needs to be properly maintained so as to achieve trapped mass balance between the opposite cylinders and thus regulation of the compression ratio.

Suggested Citation

  • Chiang, Chia-Jui & Yang, Jing-Long & Lan, Shao-Ya & Shei, Tsung-Wei & Chiang, Wen-Shu & Chen, Bo-Liang, 2013. "Dynamic modeling of a SI/HCCI free-piston engine generator with electric mechanical valves," Applied Energy, Elsevier, vol. 102(C), pages 336-346.
  • Handle: RePEc:eee:appene:v:102:y:2013:i:c:p:336-346
    DOI: 10.1016/j.apenergy.2012.07.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912005557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.07.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters," Applied Energy, Elsevier, vol. 88(4), pages 1153-1163, April.
    2. Xu, Shuaiqing & Wang, Yang & Zhu, Tao & Xu, Tao & Tao, Chengjun, 2011. "Numerical analysis of two-stroke free piston engine operating on HCCI combustion," Applied Energy, Elsevier, vol. 88(11), pages 3712-3725.
    3. Mikalsen, R. & Jones, E. & Roskilly, A.P., 2010. "Predictive piston motion control in a free-piston internal combustion engine," Applied Energy, Elsevier, vol. 87(5), pages 1722-1728, May.
    4. Gan, Suyin & Ng, Hoon Kiat & Pang, Kar Mun, 2011. "Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines," Applied Energy, Elsevier, vol. 88(3), pages 559-567, March.
    5. Machrafi, Hatim & Cavadias, Simeon & Amouroux, Jacques, 2008. "A parametric study on the emissions from an HCCI alternative combustion engine resulting from the auto-ignition of primary reference fuels," Applied Energy, Elsevier, vol. 85(8), pages 755-764, August.
    6. Mikalsen, R. & Roskilly, A.P., 2009. "Coupled dynamic-multidimensional modelling of free-piston engine combustion," Applied Energy, Elsevier, vol. 86(1), pages 89-95, January.
    7. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control," Applied Energy, Elsevier, vol. 87(4), pages 1281-1287, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geng, Heming & Wang, Yang & Zhen, Xudong & Liu, Yu & Li, Zhiyong, 2018. "Study on adaptive behavior and mechanism of compression ratio (or piston motion profile) for combustion parameters in hydraulic free piston engine," Applied Energy, Elsevier, vol. 211(C), pages 921-928.
    2. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    3. Jia, Boru & Smallbone, Andrew & Feng, Huihua & Tian, Guohong & Zuo, Zhengxing & Roskilly, A.P., 2016. "A fast response free-piston engine generator numerical model for control applications," Applied Energy, Elsevier, vol. 162(C), pages 321-329.
    4. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng, 2015. "Stability analysis of hydraulic free piston engine," Applied Energy, Elsevier, vol. 157(C), pages 805-813.
    5. Ziwei Zhang & Huihua Feng & Zhengxing Zuo, 2020. "Numerical Investigation of a Free-Piston Hydrogen-Gasoline Engine Linear Generator," Energies, MDPI, vol. 13(18), pages 1-16, September.
    6. Jia, Boru & Zuo, Zhengxing & Feng, Huihua & Tian, Guohong & Smallbone, Andrew & Roskilly, A.P., 2016. "Effect of closed-loop controlled resonance based mechanism to start free piston engine generator: Simulation and test results," Applied Energy, Elsevier, vol. 164(C), pages 532-539.
    7. Michelangelo Balmelli & Norbert Zsiga & Laura Merotto & Patrik Soltic, 2020. "Effect of the Intake Valve Lift and Closing Angle on Part Load Efficiency of a Spark Ignition Engine," Energies, MDPI, vol. 13(7), pages 1-16, April.
    8. Hu, Jibin & Wu, Wei & Yuan, Shihua & Jing, Chongbo, 2013. "Fuel combustion under asymmetric piston motion: Tested results," Energy, Elsevier, vol. 55(C), pages 209-215.
    9. Huihua Feng & Yu Song & Zhengxing Zuo & Jiao Shang & Yaodong Wang & Anthony Paul Roskilly, 2015. "Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments," Energies, MDPI, vol. 8(2), pages 1-21, January.
    10. Hung, Nguyen Ba & Lim, Ocktaeck & Iida, Norimasa, 2015. "The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine," Applied Energy, Elsevier, vol. 137(C), pages 385-401.
    11. Boru Jia & Zhengxing Zuo & Andrew Smallbone & Huihua Feng & Anthony Paul Roskilly, 2017. "A Decoupled Design Parameter Analysis for Free-Piston Engine Generators," Energies, MDPI, vol. 10(4), pages 1-14, April.
    12. Wu, Wei & Hu, Jibin & Yuan, Shihua, 2014. "Semi-analytical modelling of a hydraulic free-piston engine," Applied Energy, Elsevier, vol. 120(C), pages 75-84.
    13. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    14. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    15. Chen, Leiming & Xu, Zhaoping & Liu, Shuangshuang & Liu, Liang, 2022. "Dynamic modeling of a free-piston engine based on combustion parameters prediction," Energy, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    2. Hung, Nguyen Ba & Lim, Ocktaeck & Iida, Norimasa, 2015. "The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine," Applied Energy, Elsevier, vol. 137(C), pages 385-401.
    3. Komninos, N.P. & Kosmadakis, G.M., 2011. "Heat transfer in HCCI multi-zone modeling: Validation of a new wall heat flux correlation under motoring conditions," Applied Energy, Elsevier, vol. 88(5), pages 1635-1648, May.
    4. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    5. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    6. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    7. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    8. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    9. Zhu, Yongsheng & Wang, Yang & Zhen, Xudong & Guan, Shuai & Wang, Jiancai & Wu, Yining & Chen, Yujin & Yin, Shujun, 2014. "The control of an opposed hydraulic free piston engine," Applied Energy, Elsevier, vol. 126(C), pages 213-220.
    10. Zhao, Zhenfeng & Zhang, Fujun & Huang, Ying & Zhao, Changlu & Guo, Feng, 2012. "An experimental study of the hydraulic free piston engine," Applied Energy, Elsevier, vol. 99(C), pages 226-233.
    11. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    12. Feng, Huihua & Guo, Chendong & Yuan, Chenheng & Guo, Yuyao & Zuo, Zhengxing & Roskilly, Anthony Paul & Jia, Boru, 2016. "Research on combustion process of a free piston diesel linear generator," Applied Energy, Elsevier, vol. 161(C), pages 395-403.
    13. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    14. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    15. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    16. Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.
    17. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Ziwei Zhang & Huihua Feng & Zhengxing Zuo, 2020. "Numerical Investigation of a Free-Piston Hydrogen-Gasoline Engine Linear Generator," Energies, MDPI, vol. 13(18), pages 1-16, September.
    19. Jia, Boru & Smallbone, Andrew & Mikalsen, Rikard & Feng, Huihua & Zuo, Zhengxing & Roskilly, Anthony Paul, 2017. "Disturbance analysis of a free-piston engine generator using a validated fast-response numerical model," Applied Energy, Elsevier, vol. 185(P1), pages 440-451.
    20. Zhao, Zhenfeng & Wu, Dan & Zhang, Zhenyu & Zhang, Fujun & Zhao, Changlu, 2014. "Experimental investigation of the cycle-to-cycle variations in combustion process of a hydraulic free-piston engine," Energy, Elsevier, vol. 78(C), pages 257-265.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:102:y:2013:i:c:p:336-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.