IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp815-821.html
   My bibliography  Save this article

Kinetics of the steam gasification of a phenolic circuit board in the presence of carbonates

Author

Listed:
  • Zhang, Shangzhong
  • Yoshikawa, Kunio
  • Nakagome, Hideki
  • Kamo, Tohru

Abstract

Steam gasification of a phenolic board in the presence of molten carbonate was studied as a means to recover useful metals effectively from electronic waste while also converting its plastic fraction into clean fuel gas. In the steam gasification of the phenolic board, the presence of carbonate considerably accelerated the conversion of tar and char into gaseous products. When pulverized phenolic board particles <0.15mm were gasified, carbonate and steam permeated the sample particles, and the resulting gasification proceeded was well modeled by a homogeneous kinetic model. On the other hand relatively large phenolic board particles appeared to undergo two different hydrogen-producing gasification processes: the observed hydrogen formation rates suggest that an initial gasification occurred in the surface layer, which carbonate and steam were able to infiltrate into, and after this layer was consumed, the gasification proceeded only on the surface of the resulting char. The reactivity of char in the steam gasification depends sensitively on the conditions whereby the char is produced: rapid pyrolysis of the phenolic board produced highly reactive char, evidenced by markedly increased hydrogen formation rates in the steam gasification of chars formed under more rapid heating. However, once the char was pulverized finely, no obvious difference in reactivity was observed in the steam gasification based on the size of the phenolic board particles used to produce the char.

Suggested Citation

  • Zhang, Shangzhong & Yoshikawa, Kunio & Nakagome, Hideki & Kamo, Tohru, 2013. "Kinetics of the steam gasification of a phenolic circuit board in the presence of carbonates," Applied Energy, Elsevier, vol. 101(C), pages 815-821.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:815-821
    DOI: 10.1016/j.apenergy.2012.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912006046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Gong & Iwaki, Hiroyuki & Arai, Norio & Kitagawa, Kuniyuki, 2005. "Study on the gasification of wastepaper/carbon dioxide catalyzed by molten carbonate salts," Energy, Elsevier, vol. 30(7), pages 1192-1203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahu, Pradeep & Vairakannu, Prabu, 2023. "CO2 based co-gasification of printed circuit board with high ash coal," Energy, Elsevier, vol. 263(PE).
    2. Sergey M. Frolov & Viktor A. Smetanyuk & Anton S. Silantiev & Ilias A. Sadykov & Fedor S. Frolov & Jaroslav K. Hasiak & Alexey A. Shiryaev & Vladimir E. Sitnikov, 2024. "Thermo-Mechano-Chemical Processing of Printed Circuit Boards for Organic Fraction Removal," Waste, MDPI, vol. 2(2), pages 1-16, April.
    3. Li, Jun & Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Yang, Xinyi & Zhong, Dian & Du, Zhenyi & Chen, Hanping, 2020. "Biomass gasification in molten salt for syngas production," Energy, Elsevier, vol. 210(C).
    4. Evangelopoulos, Panagiotis & Kantarelis, Efthymios & Yang, Weihong, 2017. "Experimental investigation of the influence of reaction atmosphere on the pyrolysis of printed circuit boards," Applied Energy, Elsevier, vol. 204(C), pages 1065-1073.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed," Renewable Energy, Elsevier, vol. 83(C), pages 918-930.
    2. Li, Jun & Xie, Yingpu & Zeng, Kuo & Flamant, Gilles & Yang, Haiping & Yang, Xinyi & Zhong, Dian & Du, Zhenyi & Chen, Hanping, 2020. "Biomass gasification in molten salt for syngas production," Energy, Elsevier, vol. 210(C).
    3. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    4. Chen, Wei-Hsin & Lin, Bo-Jhih, 2013. "Hydrogen and synthesis gas production from activated carbon and steam via reusing carbon dioxide," Applied Energy, Elsevier, vol. 101(C), pages 551-559.
    5. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    6. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Wang, Zhongde & Zhang, Zhonglin & Abudula, Abuliti, 2015. "Oil production from mild pyrolysis of low-rank coal in molten salts media," Applied Energy, Elsevier, vol. 154(C), pages 944-950.
    7. Masnadi, Mohammad S. & Grace, John R. & Bi, Xiaotao T. & Lim, C. Jim & Ellis, Naoko & Li, Yong Hua & Watkinson, A. Paul, 2015. "Single-fuel steam gasification of switchgrass and coal in a bubbling fluidized bed: A comprehensive parametric reference for co-gasification study," Energy, Elsevier, vol. 80(C), pages 133-147.
    8. Yuan, Hongyou & Wu, Shubin & Yin, Xiuli & Huang, Yanqin & Guo, Daliang & Wu, Chuangzhi, 2018. "Adjustment of biomass product gas to raise H2/CO ratio and remove tar over sodium titanate catalysts," Renewable Energy, Elsevier, vol. 115(C), pages 288-298.
    9. Backer, Michael & Gladen, Adam, 2023. "Impact of salt composition and temperature on low-temperature torrefaction of pine in molten nitrate salts," Energy, Elsevier, vol. 263(PE).
    10. Hathaway, Brandon J. & Honda, Masanori & Kittelson, David B. & Davidson, Jane H., 2013. "Steam gasification of plant biomass using molten carbonate salts," Energy, Elsevier, vol. 49(C), pages 211-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:815-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.