IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v272y2022ics0378377422003900.html
   My bibliography  Save this article

Water status and thermal response of lime trees to irrigation and shade screen

Author

Listed:
  • Mira-García, Ana Belén
  • Conejero, Wenceslao
  • Vera, Juan
  • Ruiz-Sánchez, M.Carmen

Abstract

Most lime trees are cultivated under open-field conditions. However, in the Mediterranean area some growers use shade screen to protect their orchards against abiotic and biotic stresses, inducing changes in the plant’s surrounding microclimate that could affect its water status. This field experiment focuses on the effect of shade screen (high density polyethylene white net with 76% light transmission) and irrigation on plant and soil water status of Bearss lime trees. Two irrigation treatments were applied during the summer-autumn to open-field and shaded lime trees: irrigated (control) and non-irrigated (stress). Volumetric soil water content (θv), air temperature (Ta) and canopy temperature (Tc) were real-time monitored and several derived thermal indices were calculated. Stem water potential (Ψstem) and leaf gas exchange: net photosynthesis (Pn) and stomatal conductance (gs) were measured on representative days. Withholding irrigation caused a gradual decline in soil and plant water status. θv decreased from the outset in the non-irrigated treatments, showing breaking point connecting the rapid and the slower soil drying processes. Significant differences in Ψstem, and gs values were observed between controls and stressed trees 15 days after stress initiation. During early stages of water stress, lime trees cultivated in open-field showed lower values of soil and plant water status than those grown in shaded conditions. However, at the end of stress period, similar values were noted for both cropping systems, pointing to severe water deficit. Tc and Tc-Ta values reflected the current lime tree water status. The soil water content sensors anticipated the plant water stress situation respect to thermal ones. The higher θv, Ψstem, gs, Pn and Tc values registered in shaded lime trees revealed that shading allowed better soil-plant water status and a 12-day window of opportunity to respond to the imposed soil water deficits. Threshold thermal-based values are proposed for precise irrigation management of lime trees in open-field and shaded conditions.

Suggested Citation

  • Mira-García, Ana Belén & Conejero, Wenceslao & Vera, Juan & Ruiz-Sánchez, M.Carmen, 2022. "Water status and thermal response of lime trees to irrigation and shade screen," Agricultural Water Management, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422003900
    DOI: 10.1016/j.agwat.2022.107843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia-Orellana, Y. & Ruiz-Sanchez, M.C. & Alarcon, J.J. & Conejero, W. & Ortuno, M.F. & Nicolas, E. & Torrecillas, A., 2007. "Preliminary assessment of the feasibility of using maximum daily trunk shrinkage for irrigation scheduling in lemon trees," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 167-171, April.
    2. Alarcon, J.J. & Ortuno, M.F. & Nicolas, E. & Navarro, A. & Torrecillas, A., 2006. "Improving water-use efficiency of young lemon trees by shading with aluminised-plastic nets," Agricultural Water Management, Elsevier, vol. 82(3), pages 387-398, April.
    3. Pérez-Pérez, J.G. & Robles, J.M. & Botía, P., 2009. "Influence of deficit irrigation in phase III of fruit growth on fruit quality in 'lane late' sweet orange," Agricultural Water Management, Elsevier, vol. 96(6), pages 969-974, June.
    4. Lopez, G. & Boini, A. & Manfrini, L. & Torres-Ruiz, J.M. & Pierpaoli, E. & Zibordi, M. & Losciale, P. & Morandi, B. & Corelli-Grappadelli, L., 2018. "Effect of shading and water stress on light interception, physiology and yield of apple trees," Agricultural Water Management, Elsevier, vol. 210(C), pages 140-148.
    5. Thompson, R.B. & Gallardo, M. & Valdez, L.C. & Fernandez, M.D., 2007. "Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 13-28, August.
    6. Girona, J. & Mata, M. & Fereres, E. & Goldhamer, D. A. & Cohen, M., 2002. "Evapotranspiration and soil water dynamics of peach trees under water deficits," Agricultural Water Management, Elsevier, vol. 54(2), pages 107-122, March.
    7. Sepaskhah, A. R. & Kashefipour, S. M., 1994. "Relationships between leaf water potential, CWSI, yield and fruit quality of sweet lime under drip irrigation," Agricultural Water Management, Elsevier, vol. 25(1), pages 13-21, February.
    8. Agam, N. & Cohen, Y. & Berni, J.A.J. & Alchanatis, V. & Kool, D. & Dag, A. & Yermiyahu, U. & Ben-Gal, A., 2013. "An insight to the performance of crop water stress index for olive trees," Agricultural Water Management, Elsevier, vol. 118(C), pages 79-86.
    9. Egea, Gregorio & Padilla-Díaz, Carmen M. & Martinez-Guanter, Jorge & Fernández, José E. & Pérez-Ruiz, Manuel, 2017. "Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 210-221.
    10. Lima, R.S.N & García-Tejero, I. & Lopes, T.S. & Costa, J.M. & Vaz, M. & Durán-Zuazo, V.H. & Chaves, M. & Glenn, D.M. & Campostrini, E., 2016. "Linking thermal imaging to physiological indicators in Carica papaya L. under different watering regimes," Agricultural Water Management, Elsevier, vol. 164(P1), pages 148-157.
    11. Abrisqueta, I. & Vera, J. & Tapia, L.M. & Abrisqueta, J.M. & Ruiz-Sánchez, M.C., 2012. "Soil water content criteria for peach trees water stress detection during the postharvest period," Agricultural Water Management, Elsevier, vol. 104(C), pages 62-67.
    12. Wang, D. & Gartung, J., 2010. "Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation," Agricultural Water Management, Elsevier, vol. 97(11), pages 1787-1794, November.
    13. Mirás-Avalos, José Manuel & Pérez-Sarmiento, Francisco & Alcobendas, Rosalía & Alarcón, Juan José & Mounzer, Oussama & Nicolás, Emilio, 2016. "Reference values of maximum daily trunk shrinkage for irrigation scheduling in mid-late maturing peach trees," Agricultural Water Management, Elsevier, vol. 171(C), pages 31-39.
    14. Ballester, C. & Castel, J. & Jiménez-Bello, M.A. & Castel, J.R. & Intrigliolo, D.S., 2013. "Thermographic measurement of canopy temperature is a useful tool for predicting water deficit effects on fruit weight in citrus trees," Agricultural Water Management, Elsevier, vol. 122(C), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanco, Victor & Kalcsits, Lee, 2023. "Long-term validation of continuous measurements of trunk water potential and trunk diameter indicate different diurnal patterns for pear under water limitations," Agricultural Water Management, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramírez-Cuesta, J.M. & Ortuño, M.F. & Gonzalez-Dugo, V. & Zarco-Tejada, P.J. & Parra, M. & Rubio-Asensio, J.S. & Intrigliolo, D.S., 2022. "Assessment of peach trees water status and leaf gas exchange using on-the-ground versus airborne-based thermal imagery," Agricultural Water Management, Elsevier, vol. 267(C).
    2. Abrisqueta, I. & Vera, J. & Tapia, L.M. & Abrisqueta, J.M. & Ruiz-Sánchez, M.C., 2012. "Soil water content criteria for peach trees water stress detection during the postharvest period," Agricultural Water Management, Elsevier, vol. 104(C), pages 62-67.
    3. Nolz, R. & Cepuder, P. & Balas, J. & Loiskandl, W., 2016. "Soil water monitoring in a vineyard and assessment of unsaturated hydraulic parameters as thresholds for irrigation management," Agricultural Water Management, Elsevier, vol. 164(P2), pages 235-242.
    4. Pedrero, Francisco & Allende, Ana & Gil, María I. & Alarcón, Juan J., 2012. "Soil chemical properties, leaf mineral status and crop production in a lemon tree orchard irrigated with two types of wastewater," Agricultural Water Management, Elsevier, vol. 109(C), pages 54-60.
    5. Saitta, Daniela & Consoli, Simona & Ferlito, Filippo & Torrisi, Biagio & Allegra, Maria & Longo-Minnolo, Giuseppe & Ramírez-Cuesta, Juan Miguel & Vanella, Daniela, 2021. "Adaptation of citrus orchards to deficit irrigation strategies," Agricultural Water Management, Elsevier, vol. 247(C).
    6. Pascual-Seva, Núria & San Bautista, Alberto & López-Galarza, Salvador & Maroto, José Vicente & Pascual, Bernardo, 2018. "Influence of different drip irrigation strategies on irrigation water use efficiency on chufa (Cyperus esculentus L. var. sativus Boeck.) crop," Agricultural Water Management, Elsevier, vol. 208(C), pages 406-413.
    7. García, Ana Belén Mira & Romero-Trigueros, Cristina & Gambín, José María Bayona & Sánchez Iglesias, Ma del Puerto & Tortosa, Pedro Antonio Nortes & Nicolás, Emilio Nicolás, 2023. "Estimation of stomatal conductance by infra-red thermometry in citrus trees cultivated under regulated deficit irrigation and reclaimed water," Agricultural Water Management, Elsevier, vol. 276(C).
    8. Blanco, Víctor & Domingo, Rafael & Pérez-Pastor, Alejandro & Blaya-Ros, Pedro José & Torres-Sánchez, Roque, 2018. "Soil and plant water indicators for deficit irrigation management of field-grown sweet cherry trees," Agricultural Water Management, Elsevier, vol. 208(C), pages 83-94.
    9. Vera, J. & Mounzer, O. & Ruiz-Sánchez, M.C. & Abrisqueta, I. & Tapia, L.M. & Abrisqueta, J.M., 2009. "Soil water balance trial involving capacitance and neutron probe measurements," Agricultural Water Management, Elsevier, vol. 96(6), pages 905-911, June.
    10. Apolo-Apolo, O.E. & Martínez-Guanter, J. & Pérez-Ruiz, M. & Egea, G., 2020. "Design and assessment of new artificial reference surfaces for real time monitoring of crop water stress index in maize," Agricultural Water Management, Elsevier, vol. 240(C).
    11. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    12. Beyá-Marshall, Víctor & Arcos, Emilia & Seguel, Óscar & Galleguillos, Mauricio & Kremer, Cristián, 2022. "Optimal irrigation management for avocado (cv. 'Hass') trees by monitoring soil water content and plant water status," Agricultural Water Management, Elsevier, vol. 271(C).
    13. Luan, Yajun & Xu, Junzeng & Lv, Yuping & Liu, Xiaoyin & Wang, Haiyu & Liu, Shimeng, 2021. "Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging," Agricultural Water Management, Elsevier, vol. 246(C).
    14. Puppo, Lucía & García, Claudio & Bautista, Eduardo & Hunsaker, Douglas J. & Beretta, Andrés & Girona, Joan, 2019. "Seasonal basal crop coefficient pattern of young non-bearing olive trees grown in drainage lysimeters in a temperate sub-humid climate," Agricultural Water Management, Elsevier, vol. 226(C).
    15. Conesa, María R. & Conejero, Wenceslao & Vera, Juan & Agulló, Vicente & García-Viguera, Cristina & Ruiz-Sánchez, M. Carmen, 2021. "Irrigation management practices in nectarine fruit quality at harvest and after cold storage," Agricultural Water Management, Elsevier, vol. 243(C).
    16. De la Rosa, J.M. & Domingo, R. & Gómez-Montiel, J. & Pérez-Pastor, A., 2015. "Implementing deficit irrigation scheduling through plant water stress indicators in early nectarine trees," Agricultural Water Management, Elsevier, vol. 152(C), pages 207-216.
    17. Zahedi, Seyed Morteza & Hosseini, Marjan Sadat & Daneshvar Hakimi Meybodi, Naghmeh & Abadía, Javier & Germ, Mateja & Gholami, Rahmatollah & Abdelrahman, Mostafa, 2022. "Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers," Agricultural Water Management, Elsevier, vol. 261(C).
    18. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G., 2017. "Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla," Agricultural Water Management, Elsevier, vol. 186(C), pages 98-107.
    19. Ortuño, M.F. & Conejero, W. & Moreno, F. & Moriana, A. & Intrigliolo, D.S. & Biel, C. & Mellisho, C.D. & Pérez-Pastor, A. & Domingo, R. & Ruiz-Sánchez, M.C. & Casadesus, J. & Bonany, J. & Torrecillas,, 2010. "Could trunk diameter sensors be used in woody crops for irrigation scheduling? A review of current knowledge and future perspectives," Agricultural Water Management, Elsevier, vol. 97(1), pages 1-11, January.
    20. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:272:y:2022:i:c:s0378377422003900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.