IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v203y2018icp366-375.html
   My bibliography  Save this article

Comparison of three crop water stress index models with sap flow measurements in maize

Author

Listed:
  • Han, Ming
  • Zhang, Huihui
  • DeJonge, Kendall C.
  • Comas, Louise H.
  • Gleason, Sean

Abstract

Both empirical and theoretical models have been widely used to calculate a crop water stress index (CWSI) − a metric often used to describe crop water status. The purpose of this study was to determine the accuracy, limitation, and uncertainty of an empirical (CWSI-E) and two theoretical models compared with sap flow measurement in maize. One theoretical model used a calculated aerodynamic resistance (CWSI-T1), and the other theoretical model used seasonal average aerodynamic resistance (CWSI-T2). Considering the uncertainty of crop coefficient and sap flow measurement, CWSI-T2 and CWSI-E models gave reasonable overall estimates of water stress. The average root mean square deviation at each growth stage from each model ranged from 0.16 to 0.33. CWSI-T2 and the CWSI-E provided relatively accurate prediction of crop stress, both between growth stages and irrigation events. However, CWSI-T1 did not accurately predict water stress between growth stages or between irrigation events. By including climate factors, crop water stress estimated by CWSI-T2 showed less variation and uncertainty than CWSI-E. The uncertainty of both CWSI-T2 and CWSI-E decreased with increasing vapor pressure deficit (VPD), and CWSI-E show larger crop water stress prediction uncertainty. The intercept of non-water stress baseline was the main source of the uncertainty for CWSI-E and CWSI-T2. Considering both uncertainty and stability, we recommend CWSI-T2 model (i.e., seasonal average aerodynamic resistance) for maize water stress assessment.

Suggested Citation

  • Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
  • Handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:366-375
    DOI: 10.1016/j.agwat.2018.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418301252
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.02.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chabot, Rosanne & Bouarfa, Sami & Zimmer, Daniel & Chaumont, Cedric & Duprez, Cedric, 2002. "Sugarcane transpiration with shallow water-table: sap flow measurements and modelling," Agricultural Water Management, Elsevier, vol. 54(1), pages 17-36, March.
    2. Zhang, Yanqun & Kang, Shaozhong & Ward, Eric J. & Ding, Risheng & Zhang, Xin & Zheng, Rui, 2011. "Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors," Agricultural Water Management, Elsevier, vol. 98(8), pages 1207-1214, May.
    3. Zhao, Peng & Li, Sien & Li, Fusheng & Du, Taisheng & Tong, Ling & Kang, Shaozhong, 2015. "Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China," Agricultural Water Management, Elsevier, vol. 160(C), pages 41-56.
    4. Yuan, Guofu & Luo, Yi & Sun, Xiaomin & Tang, Dengyin, 2004. "Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(1), pages 29-40, January.
    5. Emekli, Yasar & Bastug, Ruhi & Buyuktas, Dursun & Emekli, Nefise Yasemin, 2007. "Evaluation of a crop water stress index for irrigation scheduling of bermudagrass," Agricultural Water Management, Elsevier, vol. 90(3), pages 205-212, June.
    6. Cammalleri, C. & Rallo, G. & Agnese, C. & Ciraolo, G. & Minacapilli, M. & Provenzano, G., 2013. "Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard," Agricultural Water Management, Elsevier, vol. 120(C), pages 89-97.
    7. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    8. Agam, N. & Cohen, Y. & Berni, J.A.J. & Alchanatis, V. & Kool, D. & Dag, A. & Yermiyahu, U. & Ben-Gal, A., 2013. "An insight to the performance of crop water stress index for olive trees," Agricultural Water Management, Elsevier, vol. 118(C), pages 79-86.
    9. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pappalardo, S. & Consoli, S. & Longo-Minnolo, G. & Vanella, D. & Longo, D. & Guarrera, S. & D’Emilio, A. & Ramírez-Cuesta, J.M., 2023. "Performance evaluation of a low-cost thermal camera for citrus water status estimation," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    3. Liao, Qi & Ding, Risheng & Du, Taisheng & Kang, Shaozhong & Tong, Ling & Li, Sien, 2022. "Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress," Agricultural Water Management, Elsevier, vol. 268(C).
    4. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    5. Katimbo, Abia & Rudnick, Daran R. & Liang, Wei-zhen & DeJonge, Kendall C. & Lo, Tsz Him & Franz, Trenton E. & Ge, Yufeng & Qiao, Xin & Kabenge, Isa & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Two source energy balance maize evapotranspiration estimates using close-canopy mobile infrared sensors and upscaling methods under variable water stress conditions," Agricultural Water Management, Elsevier, vol. 274(C).
    6. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2022. "Effects of image spatial resolution and statistical scale on water stress estimation performance of MGDEXG: A new crop water stress indicator derived from RGB images," Agricultural Water Management, Elsevier, vol. 264(C).
    7. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    8. Venturin, Afonso Zucolotto & Guimarães, Claudinei Martins & Sousa, Elias Fernandes de & Machado Filho, José Altino & Rodrigues, Weverton Pereira & Serrazine, Ícaro de Araujo & Bressan-Smith, Ricardo &, 2020. "Using a crop water stress index based on a sap flow method to estimate water status in conilon coffee plants," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Ekinzog, Elmer Kanjo & Schlerf, Martin & Kraft, Martin & Werner, Florian & Riedel, Angela & Rock, Gilles & Mallick, Kaniska, 2022. "Revisiting crop water stress index based on potato field experiments in Northern Germany," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2021. "The mean value of gaussian distribution of excess green index: A new crop water stress indicator," Agricultural Water Management, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    2. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Trout, Thomas J., 2016. "Estimating maize water stress by standard deviation of canopy temperature in thermal imagery," Agricultural Water Management, Elsevier, vol. 177(C), pages 400-409.
    3. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    4. Wu, Youjie & Du, Taisheng & Ding, Risheng & Yuan, Yusen & Li, Sien & Tong, Ling, 2017. "An isotope method to quantify soil evaporation and evaluate water vapor movement under plastic film mulch," Agricultural Water Management, Elsevier, vol. 184(C), pages 59-66.
    5. Erdem, Yesim & Arin, Levent & Erdem, Tolga & Polat, Serdar & Deveci, Murat & Okursoy, Hakan & Gültas, Hüseyin T., 2010. "Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica)," Agricultural Water Management, Elsevier, vol. 98(1), pages 148-156, December.
    6. Qiu, Rangjian & Liu, Chunwei & Cui, Ningbo & Wu, Youjie & Wang, Zhenchang & Li, Gen, 2019. "Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    7. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2021. "The mean value of gaussian distribution of excess green index: A new crop water stress indicator," Agricultural Water Management, Elsevier, vol. 251(C).
    8. Kumar, Navsal & Adeloye, Adebayo J. & Shankar, Vijay & Rustum, Rabee, 2020. "Neural computing modelling of the crop water stress index," Agricultural Water Management, Elsevier, vol. 239(C).
    9. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    10. Liu, Minguo & Wu, Xiaojuan & Yang, Huimin, 2022. "Evapotranspiration characteristics and soil water balance of alfalfa grasslands under regulated deficit irrigation in the inland arid area of Midwestern China," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Paredes, Paula & Pereira, Luis S. & Rodrigues, Gonçalo C. & Botelho, Nuno & Torres, Maria Odete, 2017. "Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies," Agricultural Water Management, Elsevier, vol. 189(C), pages 5-18.
    12. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2022. "Effects of image spatial resolution and statistical scale on water stress estimation performance of MGDEXG: A new crop water stress indicator derived from RGB images," Agricultural Water Management, Elsevier, vol. 264(C).
    13. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    14. Zhao, Peng & Kang, Shaozhong & Li, Sien & Ding, Risheng & Tong, Ling & Du, Taisheng, 2018. "Seasonal variations in vineyard ET partitioning and dual crop coefficients correlate with canopy development and surface soil moisture," Agricultural Water Management, Elsevier, vol. 197(C), pages 19-33.
    15. Venturin, Afonso Zucolotto & Guimarães, Claudinei Martins & Sousa, Elias Fernandes de & Machado Filho, José Altino & Rodrigues, Weverton Pereira & Serrazine, Ícaro de Araujo & Bressan-Smith, Ricardo &, 2020. "Using a crop water stress index based on a sap flow method to estimate water status in conilon coffee plants," Agricultural Water Management, Elsevier, vol. 241(C).
    16. Wang, Di & Wang, Li, 2017. "Dynamics of evapotranspiration partitioning for apple trees of different ages in a semiarid region of northwest China," Agricultural Water Management, Elsevier, vol. 191(C), pages 1-15.
    17. Yang Yu & Jesús Rodrigo-Comino, 2021. "Analyzing Regional Geographic Challenges: The Resilience of Chinese Vineyards to Land Degradation Using a Societal and Biophysical Approach," Land, MDPI, vol. 10(2), pages 1-15, February.
    18. Wang, Shangtao & Zhu, Gaofeng & Xia, Dunsheng & Ma, Jinzhu & Han, Tuo & Ma, Ting & Zhang, Kun & Shang, Shasha, 2019. "The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China," Agricultural Water Management, Elsevier, vol. 212(C), pages 388-398.
    19. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.
    20. Singh, Jasreman & Ge, Yufeng & Heeren, Derek M. & Walter-Shea, Elizabeth & Neale, Christopher M.U. & Irmak, Suat & Woldt, Wayne E. & Bai, Geng & Bhatti, Sandeep & Maguire, Mitchell S., 2021. "Inter-relationships between water depletion and temperature differential in row crop canopies in a sub-humid climate," Agricultural Water Management, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:203:y:2018:i:c:p:366-375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.