IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v252y2021ics0378377421001402.html
   My bibliography  Save this article

The comparison of different irrigation methods on yield and water use efficiency of the jujube

Author

Listed:
  • Wang, Cheng
  • Bai, Dan
  • Li, Yibo
  • Yao, Baolin
  • Feng, Yaqin

Abstract

Water shortage restricts the development of jujube plantation in southern Xinjiang, and the application of water–saving irrigation technology is the key to solve this problem. This study investigated the response of irrigation water use efficiency to various irrigation technologies (vertical tube irrigation and surface drip irrigation) and jujube yield and quality, and to choose a suitable irrigation method for Hui–jujube trees planting. The field experiment was conducted over 2 years. Vertical tube irrigation was implemented with three levels of water pressure by using water pressure heads 0.8, 1.0, and 1.2 m. Additionally, surface drip irrigation was used as a control, and four treatments were used in total. The results indicated that vertical tube irrigation helped save approximately 37–70% of water, and its water use efficiency was 1.4–4.3 times that of surface drip irrigation. Compared with Hui–jujube trees watered by drip irrigation, those watered by vertical tube irrigation had slightly higher yield and decreased fruit cracking (25–83%). Moreover, the sugar–acid ratio increased significantly (P < 0.05). Besides, the continuous water supply used in vertical tube irrigation allowed the maintenance of relatively stable SWC in the main root layer (20–60 cm), can provided a good soil–water–air environment for jujube growth. Vertical tube irrigation saved water primarily because it sends water directly to the main root layer through the emitters buried in the soil, reducing the evaporation of water in the upper soil layer. The irrigation water amount of vertical tube irrigation was proportional to the water supply pressure head. Water use efficiency was the highest under the lowest water supply pressure (water pressure head 0.8 m). The present findings provide a scientific basis for the application of vertical tube irrigation in arid areas.

Suggested Citation

  • Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001402
    DOI: 10.1016/j.agwat.2021.106875
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421001402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    2. Abd El-Wahed, M.H. & Ali, E.A., 2013. "Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit," Agricultural Water Management, Elsevier, vol. 120(C), pages 64-71.
    3. Cui, Ningbo & Du, Taisheng & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua & Wang, Mixia & Li, Zhijun, 2008. "Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees," Agricultural Water Management, Elsevier, vol. 95(4), pages 489-497, April.
    4. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    6. Ma, Lihui & Wang, Xing & Gao, Zhiyong & Youke, Wang & Nie, Zhenyi & Liu, Xiaoli, 2019. "Canopy pruning as a strategy for saving water in a dry land jujube plantation in a loess hilly region of China," Agricultural Water Management, Elsevier, vol. 216(C), pages 436-443.
    7. Du, Ya-Dan & Zhang, Qian & Cui, Bing-Jing & Sun, Jun & Wang, Zhen & Ma, Li-Hui & Niu, Wen-Quan, 2020. "Aerated irrigation improves tomato yield and nitrogen use efficiency while reducing nitrogen application rate," Agricultural Water Management, Elsevier, vol. 235(C).
    8. Feng, Yu & Cui, Ningbo & Du, Taisheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu, 2017. "Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China," Agricultural Water Management, Elsevier, vol. 194(C), pages 1-12.
    9. Du, Ya-Dan & Niu, Wen-Quan & Gu, Xiao-Bo & Zhang, Qian & Cui, Bing-Jing & Zhao, Ying, 2018. "Crop yield and water use efficiency under aerated irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 210(C), pages 158-164.
    10. Galindo, A. & Cruz, Z.N. & Rodríguez, P. & Collado-González, J. & Corell, M. & Memmi, H. & Moreno, F. & Moriana, A. & Torrecillas, A. & Pérez-López, D., 2016. "Jujube fruit water relations at fruit maturation in response to water deficits," Agricultural Water Management, Elsevier, vol. 164(P1), pages 110-117.
    11. Montoro, Amelia & Torija, Irene & Mañas, Fernando & López-Urrea, Ramón, 2020. "Lysimeter measurements of nocturnal and diurnal grapevine transpiration: Effect of soil water content, and phenology," Agricultural Water Management, Elsevier, vol. 229(C).
    12. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G, 2016. "Subsurface drip irrigation affects trunk diameter fluctuations in lemon trees, in comparison with surface drip irrigation," Agricultural Water Management, Elsevier, vol. 165(C), pages 11-21.
    13. Aydinsakir, Koksal & Buyuktas, Dursun & Dinç, Nazmi & Erdurmus, Cengiz & Bayram, Edip & Yegin, Arzu Bayir, 2021. "Yield and bioethanol productivity of sorghum under surface and subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 243(C).
    14. Martínez-Gimeno, M.A. & Bonet, L. & Provenzano, G. & Badal, E. & Intrigliolo, D.S. & Ballester, C., 2018. "Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 206(C), pages 209-216.
    15. Zhang, Zhenyu & Li, Xiaoyu & Liu, Lijuan & Wang, Yugang & Li, Yan, 2020. "Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area," Agricultural Water Management, Elsevier, vol. 230(C).
    16. Patel, Neelam & Rajput, T.B.S., 2007. "Effect of drip tape placement depth and irrigation level on yield of potato," Agricultural Water Management, Elsevier, vol. 88(1-3), pages 209-223, March.
    17. Reyes-Cabrera, Joel & Zotarelli, Lincoln & Dukes, Michael D. & Rowland, Diane L. & Sargent, Steven A., 2016. "Soil moisture distribution under drip irrigation and seepage for potato production," Agricultural Water Management, Elsevier, vol. 169(C), pages 183-192.
    18. Khorsand, Afshin & Rezaverdinejad, Vahid & Asgarzadeh, Hossein & Majnooni-Heris, Abolfazl & Rahimi, Amir & Besharat, Sina, 2019. "Irrigation scheduling of maize based on plant and soil indices with surface drip irrigation subjected to different irrigation regimes," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    19. Phogat, V. & Šimůnek, J. & Skewes, M.A. & Cox, J.W. & McCarthy, M.G., 2016. "Improving the estimation of evaporation by the FAO-56 dual crop coefficient approach under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 178(C), pages 189-200.
    20. Pendergast, L. & Bhattarai, S.P. & Midmore, D.J., 2019. "Evaluation of aerated subsurface drip irrigation on yield, dry weight partitioning and water use efficiency of a broad-acre chickpea (Cicer arietinum, L.) in a vertosol," Agricultural Water Management, Elsevier, vol. 217(C), pages 38-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lining & Zuo, Qiang & Shi, Jianchu & Wu, Xun & Wei, Congmin & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2023. "Balancing economic benefits and environmental repercussions based on smart irrigation by regulating root zone water and salinity dynamics," Agricultural Water Management, Elsevier, vol. 285(C).
    2. Bai, Youshuai & Zhang, Hengjia & Jia, Shenghai & Huang, Caixia & Zhao, Xia & Wei, Huiqin & Yang, Shurui & Ma, Yan & Kou, Rui, 2022. "Plastic film mulching combined with sand tube irrigation improved yield, water use efficiency, and fruit quality of jujube in an arid desert area of Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    3. Zhaoyang Li & Rui Zong & Tianyu Wang & Zhenhua Wang & Jinzhu Zhang, 2021. "Adapting Root Distribution and Improving Water Use Efficiency via Drip Irrigation in a Jujube ( Zizyphus jujube Mill.) Orchard after Long-Term Flood Irrigation," Agriculture, MDPI, vol. 11(12), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Shenglin & Cui, Ningbo & Gong, Daozhi & Liu, Chunwei & Xing, Liwen & Wu, Zongjun & Wang, Zhihui & Wang, Jiaxin, 2023. "A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Bai, Tiecheng & Zhang, Nannan & Wang, Tao & Wang, Desheng & Yu, Caili & Meng, Wenbo & Fei, Hao & Chen, Rengu & Li, Yanhui & Zhou, Baoping, 2021. "Simulating on the effects of irrigation on jujube tree growth, evapotranspiration and water use based on crop growth model," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Bai, Youshuai & Zhang, Hengjia & Jia, Shenghai & Huang, Caixia & Zhao, Xia & Wei, Huiqin & Yang, Shurui & Ma, Yan & Kou, Rui, 2022. "Plastic film mulching combined with sand tube irrigation improved yield, water use efficiency, and fruit quality of jujube in an arid desert area of Northwest China," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).
    5. Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
    6. Wang, Haidong & Wang, Naijiang & Quan, Hao & Zhang, Fucang & Fan, Junliang & Feng, Hao & Cheng, Minghui & Liao, Zhenqi & Wang, Xiukang & Xiang, Youzhen, 2022. "Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 269(C).
    7. Wang, Linlin & Wu, Wenyong & Xiao, Juan & Huang, Qiannan & Hu, Yaqi, 2021. "Effects of different drip irrigation modes on water use efficiency of pear trees in Northern China," Agricultural Water Management, Elsevier, vol. 245(C).
    8. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    9. Zhou, Yunpeng & Zhou, Bo & Xu, Feipeng & Muhammad, Tahir & Li, Yunkai, 2019. "Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    10. Zeng, Chun-Zhi & Bie, Zhi-Long & Yuan, Bao-Zhong, 2009. "Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse," Agricultural Water Management, Elsevier, vol. 96(4), pages 595-602, April.
    11. Zhu, Jinjin & Niu, Wenquan & Zhang, Zhenhua & Siddique, Kadambot H.M. & Dan Sun, & Yang, Runya, 2022. "Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation," Agricultural Water Management, Elsevier, vol. 274(C).
    12. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    13. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    14. Yu, Liuyang & Gao, Xiaodong & Zhao, Xining, 2020. "Global synthesis of the impact of droughts on crops’ water-use efficiency (WUE): Towards both high WUE and productivity," Agricultural Systems, Elsevier, vol. 177(C).
    15. Ouyang, Zan & Tian, Juncang & Yan, Xinfang & Shen, Hui, 2020. "Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce," Agricultural Water Management, Elsevier, vol. 228(C).
    16. Malika Mahmoudi & Mohamed Naceur Khelil & Sarra Hechmi & Basma Latrech & Rim Ghrib & Abdelhamid Boujlben & Samir Yacoubi, 2022. "Effect of Surface and Subsurface Drip Irrigation with Treated Wastewater on Soil and Water Productivity of Okra ( Abemoschus esculentus ) Crop in Semi-Arid Region of Tunisia," Agriculture, MDPI, vol. 12(12), pages 1, November.
    17. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    18. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    19. Zhenzhen Yu & Chun Wang & Huafen Zou & Hongxuan Wang & Hailiang Li & Haitian Sun & Deshui Yu, 2022. "The Effects of Aerated Irrigation on Soil Respiration and the Yield of the Maize Root Zone," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    20. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.