IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v243y2021ics0378377420312531.html
   My bibliography  Save this article

Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples

Author

Listed:
  • Liao, Yang
  • Cao, Hong-Xia
  • Xue, Wen-Kai
  • Liu, Xing

Abstract

Mulching and deficit irrigation are often used to alleviate the contradiction between the water supply and consumption in the apple industry in the Loess Plateau of China. However, the effects of the combination of mulching and deficit irrigation on the soil environment and the growth and productivity of apple trees are not clear. Field experiments were conducted in 2018 and 2019, which included three mulching methods—horticultural fabric mulching (FM), corn straw mulching (SM), and clear tillage treatment with no mulching (TL)—and three irrigation strategies—full irrigation (W1), moderate deficit irrigation (W2), and severe deficit irrigation (W3). The results showed that both SM and FM significantly increased the soil water content (SWC), especially in the early stage of the growth period. SM significantly reduced and stabilized the soil temperature during the whole growth season and effectively delayed the onset of flowering, while FM had no significant effect on the soil temperature. Both mulching and irrigation significantly increased the net photosynthetic rate (Pn) of leaves, and SM inhibited the occurrence of midday depression. A significant improvement of the yield was found in the SM and FM treatments, and there was little difference between them. Differences of the yield under different irrigation amounts were only reflected in the TL treatment in 2019, as a high soil moisture content under mulch counteracts part of the irrigation effect. Taken together, the results indicate that SM and FM have the potential to increase apple yields in the Loess Plateau by improving the soil environment and regulating the growth and physiology of apple trees.

Suggested Citation

  • Liao, Yang & Cao, Hong-Xia & Xue, Wen-Kai & Liu, Xing, 2021. "Effects of the combination of mulching and deficit irrigation on the soil water and heat, growth and productivity of apples," Agricultural Water Management, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420312531
    DOI: 10.1016/j.agwat.2020.106482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420312531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hong & Wang, Chenbing & Zhao, Xiumei & Wang, Falin, 2015. "Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 154(C), pages 20-28.
    2. Alikhani-Koupaei, Majid & Fatahi, Reza & Zamani, Zabihollah & Salimi, Saeedeh, 2018. "Effects of deficit irrigation on some physiological traits, production and fruit quality of ‘Mazafati’ date palm and the fruit wilting and dropping disorder," Agricultural Water Management, Elsevier, vol. 209(C), pages 219-227.
    3. Cui, Ningbo & Du, Taisheng & Li, Fusheng & Tong, Ling & Kang, Shaozhong & Wang, Mixia & Liu, Xiaozhi & Li, Zhijun, 2009. "Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree," Agricultural Water Management, Elsevier, vol. 96(8), pages 1237-1246, August.
    4. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    5. Xie, Zhongkui & Wang, Yajun & Jiang, Wenlan & Wei, Xinghu, 2006. "Evaporation and evapotranspiration in a watermelon field mulched with gravel of different sizes in northwest China," Agricultural Water Management, Elsevier, vol. 81(1-2), pages 173-184, March.
    6. Abd El-Wahed, M.H. & Ali, E.A., 2013. "Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit," Agricultural Water Management, Elsevier, vol. 120(C), pages 64-71.
    7. Cui, Ningbo & Du, Taisheng & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua & Wang, Mixia & Li, Zhijun, 2008. "Regulated deficit irrigation improved fruit quality and water use efficiency of pear-jujube trees," Agricultural Water Management, Elsevier, vol. 95(4), pages 489-497, April.
    8. Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Guo, Zhihong, 2011. "Effects of gravel–sand mulch, plastic mulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soil temperature and watermelon yield in a semi-arid Loess Plateau of ," Agricultural Water Management, Elsevier, vol. 101(1), pages 88-92.
    9. Kusakabe, A. & Contreras-Barragan, B.A. & Simpson, C.R. & Enciso, J.M. & Nelson, S.D. & Melgar, J.C., 2016. "Application of partial rootzone drying to improve irrigation water use efficiency in grapefruit trees," Agricultural Water Management, Elsevier, vol. 178(C), pages 66-75.
    10. Liao, Renkuan & Wu, Wenyong & Hu, Yaqi & Xu, Di & Huang, Qiannan & Wang, Shiyu, 2019. "Micro-irrigation strategies to improve water-use efficiency of cherry trees in Northern China," Agricultural Water Management, Elsevier, vol. 221(C), pages 388-396.
    11. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    12. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    13. Liu, Y. & Tao, Y. & Wan, K.Y. & Zhang, G.S. & Liu, D.B. & Xiong, G.Y. & Chen, F., 2012. "Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China," Agricultural Water Management, Elsevier, vol. 110(C), pages 34-40.
    14. García-Tejero, I. & Romero-Vicente, R. & Jiménez-Bocanegra, J.A. & Martínez-García, G. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Response of citrus trees to deficit irrigation during different phenological periods in relation to yield, fruit quality, and water productivity," Agricultural Water Management, Elsevier, vol. 97(5), pages 689-699, May.
    15. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    16. Yang, Jian & Mao, Xiaomin & Wang, Kai & Yang, Weicai, 2018. "The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 232-245.
    17. Ma, Fusheng & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua & Du, Taisheng & Hu, Xiaotao & Wang, Mixia, 2007. "Effect of water deficit in different growth stages on stem sap flux of greenhouse grown pear-jujube tree," Agricultural Water Management, Elsevier, vol. 90(3), pages 190-196, June.
    18. Faci, J.M. & Blanco, O. & Medina, E.T. & Martínez-Cob, A., 2014. "Effect of post veraison regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 73-83.
    19. Zhang, Qingtao & Wang, Shiping & Li, Li & Inoue, Mitsuhiro & Xiang, Jiao & Qiu, Guoyu & Jin, Wenbiao, 2014. "Effects of mulching and sub-surface irrigation on vine growth, berry sugar content and water use of grapevines," Agricultural Water Management, Elsevier, vol. 143(C), pages 1-8.
    20. Huang, Mingbin & Gallichand, Jacques, 2006. "Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 67-76, September.
    21. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    22. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    23. López-López, Manuel & Espadafor, Mónica & Testi, Luca & Lorite, Ignacio Jesús & Orgaz, Francisco & Fereres, Elías, 2018. "Water use of irrigated almond trees when subjected to water deficits," Agricultural Water Management, Elsevier, vol. 195(C), pages 84-93.
    24. Rashid, Muhammad Adil & Zhang, Xiying & Andersen, Mathias Neumann & Olesen, Jørgen Eivind, 2019. "Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China Plain?," Agricultural Water Management, Elsevier, vol. 213(C), pages 1-11.
    25. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Hu, Xiaotao, 2006. "Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 41-52, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifu Zhang & Wancheng Wang & Wei Yuan & Ruihong Zhang & Xiaobo Xi, 2021. "Cattle Manure Application and Combined Straw Mulching Enhance Maize ( Zea mays L.) Growth and Water Use for Rain-Fed Cropping System of Coastal Saline Soils," Agriculture, MDPI, vol. 11(8), pages 1-14, August.
    2. Zhou, Yanqing & Gao, Xiaodong & Wang, Jiaxin & Robinson, Brett H. & Zhao, Xining, 2021. "Water-use patterns of Chinese wolfberry (Lycium barbarum L.) on the Tibetan Plateau," Agricultural Water Management, Elsevier, vol. 255(C).
    3. He, Zijian & Hu, Qingyang & Zhang, Yi & Cao, Hongxia & Nan, Xueping, 2023. "Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China," Agricultural Water Management, Elsevier, vol. 280(C).
    4. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).
    5. Di Wang, & Wang, Li, 2023. "Characteristics of soil evaporation at two stages of growth in apple orchards with different ages in a semi-humid region," Agricultural Water Management, Elsevier, vol. 280(C).
    6. Zhang, Guangxin & Dai, Rongcheng & Ma, Wenzhuo & Fan, Hengzhi & Meng, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Optimizing the ridge–furrow ratio and nitrogen application rate can increase the grain yield and water use efficiency of rain-fed spring maize in the Loess Plateau region of China," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Liyuan Bo & Xiaomin Mao & Yali Wang, 2022. "Assessing the Applicability of Biodegradable Film Mulching in Northwest China Based on Comprehensive Benefits Study," Sustainability, MDPI, vol. 14(17), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).
    2. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    3. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    4. Zhong, Yun & Fei, Liangjun & Li, Yibo & Zeng, Jian & Dai, Zhiguang, 2019. "Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 222(C), pages 221-230.
    5. Guo, Fu-Xing & Wang, Yan-Ping & Hou, Ting-Ting & Zhang, Lin-Sen & Mu, Yan & Wu, Fu-yong, 2021. "Variation of soil moisture and fine roots distribution adopts rainwater collection, infiltration promoting and soil anti-seepage system (RCIP-SA) in hilly apple orchard on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 244(C).
    6. Wen, Shenglin & Cui, Ningbo & Gong, Daozhi & Liu, Chunwei & Xing, Liwen & Wu, Zongjun & Wang, Zhihui & Wang, Jiaxin, 2023. "A global meta-analysis of yield and water productivity of woody, herbaceous and vine fruits under deficit irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Feng, Yu & Gong, Daozhi & Mei, Xurong & Hao, Weiping & Tang, Dahua & Cui, Ningbo, 2017. "Energy balance and partitioning in partial plastic mulched and non-mulched maize fields on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 191(C), pages 193-206.
    8. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    9. Xiangxiang Wang & Zhilong Cheng & Xin Cheng & Quanjiu Wang, 2022. "Effects of Surface Mulching on the Growth and Water Consumption of Maize," Agriculture, MDPI, vol. 12(11), pages 1-12, November.
    10. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    11. Wang, Cheng & Bai, Dan & Li, Yibo & Yao, Baolin & Feng, Yaqin, 2021. "The comparison of different irrigation methods on yield and water use efficiency of the jujube," Agricultural Water Management, Elsevier, vol. 252(C).
    12. Zhang, Shibo & Zhang, Guixin & Xia, Zhenqing & Wu, Mengke & Bai, Jingxuan & Lu, Haidong, 2022. "Optimizing plastic mulching improves the growth and increases grain yield and water use efficiency of spring maize in dryland of the Loess Plateau in China," Agricultural Water Management, Elsevier, vol. 271(C).
    13. Feng, Yu & Cui, Ningbo & Du, Taisheng & Gong, Daozhi & Hu, Xiaotao & Zhao, Lu, 2017. "Response of sap flux and evapotranspiration to deficit irrigation of greenhouse pear-jujube trees in semi-arid northwest China," Agricultural Water Management, Elsevier, vol. 194(C), pages 1-12.
    14. Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
    15. Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
    16. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    17. Janssens, Pieter & Deckers, Tom & Elsen, Frank & Elsen, Annemie & Schoofs, Hilde & Verjans, Wim & Vandendriessche, Hilde, 2011. "Sensitivity of root pruned ‘Conference’ pear to water deficit in a temperate climate," Agricultural Water Management, Elsevier, vol. 99(1), pages 58-66.
    18. Yang, Jian & Mao, Xiaomin & Wang, Kai & Yang, Weicai, 2018. "The coupled impact of plastic film mulching and deficit irrigation on soil water/heat transfer and water use efficiency of spring wheat in Northwest China," Agricultural Water Management, Elsevier, vol. 201(C), pages 232-245.
    19. Xiaopeng Li & Yupeng Li & Zhong Zhang & Xingang Li, 2015. "Influences of Environmental Factors on Leaf Morphology of Chinese Jujubes," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    20. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420312531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.