IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v248y2021ics0378377421000470.html
   My bibliography  Save this article

Effects of irrigation and nitrogen fertilization rates on yield, agronomic efficiency and morphophysiology in Tithonia diversifolia

Author

Listed:
  • dos Santos Silva, Alex Marciano
  • Santos, Márcia Vitória
  • da Silva, Leandro Diego
  • dos Santos, José Barbosa
  • Ferreira, Evander Alves
  • Santos, Leonardo David Tuffi

Abstract

Tithonia diversifolia (Tithonia) is performed as an invasive species with a high adaptive potential that can be used for several purposes, including an alternative source of forage for different animal categories. The use of Tithonia is growing rapidly as farmers recognize its high accumulation of biomass, good nutritional value and adaptation to tropical environments. However, the effects of irrigation and nitrogen on the characteristics of Tithonia have been poorly studied. In this context, the objective of this study was to identify changes in the productive characteristics and morphophysiology of Tithonia under different irrigation simulations and nitrogen fertilization rates, seeking to understand its adaptive potential in different water and nutritional scenarios, improvements in the efficiency of the use of water and nitrogen and its potential for use in a global context. Field trials was a split-plot design with three replicates. Whole plots were irrigation rate (0%, 25%, 50%, 75% and 100% of crop evapotranspiration - ETc) and the subplots were the nitrogen fertilizer rate (0, 50, 100 and 150 kg ha−1). There were significant effects of irrigation, nitrogen, and their interaction on dry biomass accumulation, nitrogen- and water-use efficiency, plant height, chlorophyll index, and photosynthetic rate. Irrigation and nitrogen rates increased the dry biomass accumulation. The highest dry biomass accumulation was 7.32Mgha−1 in cycle I and 10.4Mgha−1 in cycle II. The greatest nitrogen-use efficiency was observed at a rate of 100 kg of nitrogenha−1, and the greatest water-use efficiency was observed at irrigation 75% ETc. Irrigation and nitrogen also increased plant height, chlorophyll index, and photosynthetic rate. Tithonia proved to be a plant adapted to the humid temperate climate and sandy-loam texture soil, presenting great dry biomass accumulation potential even without irrigation and nitrogen fertilization. However, the greatest dry biomass accumulation was obtained with water replacement of 100% of ETc, the crop evapotranspiration, and nitrogen fertilization of 150 kg ha−1.

Suggested Citation

  • dos Santos Silva, Alex Marciano & Santos, Márcia Vitória & da Silva, Leandro Diego & dos Santos, José Barbosa & Ferreira, Evander Alves & Santos, Leonardo David Tuffi, 2021. "Effects of irrigation and nitrogen fertilization rates on yield, agronomic efficiency and morphophysiology in Tithonia diversifolia," Agricultural Water Management, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000470
    DOI: 10.1016/j.agwat.2021.106782
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106782?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jing & Bi, Xiaoqing & Ma, Maoting & Jiang, Lihua & Du, Lianfeng & Li, Shunjiang & Sun, Qinping & Zou, Guoyuan & Liu, Hongbin, 2019. "Precipitation and irrigation dominate soil water leaching in cropland in Northern China," Agricultural Water Management, Elsevier, vol. 211(C), pages 165-171.
    2. Sun, Hongyong & Shen, Yanjun & Yu, Qiang & Flerchinger, Gerald N. & Zhang, Yongqiang & Liu, Changming & Zhang, Xiying, 2010. "Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1139-1145, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    2. Shirazi, Sana Zeeshan & Mei, Xurong & Liu, Buchun & Liu, Yuan, 2022. "Estimating potential yield and change in water budget for wheat and maize across Huang-Huai-Hai Plain in the future," Agricultural Water Management, Elsevier, vol. 260(C).
    3. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    4. Michaela ŠKEŘÍKOVÁ & Václav BRANT & Milan KROULÍK & Jan PIVEC & Petr ZÁBRANSKÝ & Josef HAKL & Michael HOFBAUER, 2018. "Water demands and biomass production of sorghum and maize plants in areas with insufficient precipitation in Central Europe," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 367-378.
    5. Li, Quanqi & Bian, Chengyue & Liu, Xinhui & Ma, Changjian & Liu, Quanru, 2015. "Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain," Agricultural Water Management, Elsevier, vol. 153(C), pages 71-76.
    6. Wang, Donglin & Feng, Hao & Li, Yi & Zhang, Tibin & Dyck, Miles & Wu, Feng, 2019. "Energy input-output, water use efficiency and economics of winter wheat under gravel mulching in Northwest China," Agricultural Water Management, Elsevier, vol. 222(C), pages 354-366.
    7. Liu, Bingxia & Wang, Shiqin & Kong, Xiaole & Liu, Xiaojing & Sun, Hongyong, 2019. "Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 98-110.
    8. Luo, Jianmei & Shen, Yanjun & Qi, Yongqing & Zhang, Yucui & Xiao, Dengpan, 2018. "Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China," Agricultural Systems, Elsevier, vol. 159(C), pages 32-41.
    9. Xiaoli Shi & Wenjiao Shi & Na Dai & Minglei Wang, 2022. "Optimal Irrigation under the Constraint of Water Resources for Winter Wheat in the North China Plain," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
    10. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Gao, Wangsheng & Qin, Feng & Zhang, Jiansheng & Wu, Xia, 2014. "Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA," Agricultural Systems, Elsevier, vol. 128(C), pages 66-78.
    11. Muhammad Umair & Tabassum Hussain & Hanbing Jiang & Ayesha Ahmad & Jiawei Yao & Yongqing Qi & Yucui Zhang & Leilei Min & Yanjun Shen, 2019. "Water-Saving Potential of Subsurface Drip Irrigation For Winter Wheat," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    12. Ren, Pinpin & Huang, Feng & Li, Baoguo, 2022. "Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Tonggang Fu & Hongzhu Liang & Hui Gao & Jintong Liu, 2021. "The Taihang Mountain Region of North China is Experiencing A Significant Warming Trend," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    14. Xue Wang & Xiubin Li, 2018. "Irrigation Water Availability and Winter Wheat Abandonment in the North China Plain (NCP): Findings from a Case Study in Cangxian County of Hebei Province," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    15. Sun, Qinping & Kröbel, Roland & Müller, Torsten & Römheld, Volker & Cui, Zhenling & Zhang, Fusuo & Chen, Xinping, 2011. "Optimization of yield and water-use of different cropping systems for sustainable groundwater use in North China Plain," Agricultural Water Management, Elsevier, vol. 98(5), pages 808-814, March.
    16. Guangshuai Wang & Zhenjie Du & Huifeng Ning & Hao Liu & Sunusi Amin Abubakar & Yang Gao, 2021. "Changes in GHG Emissions Based on Irrigation Water Quality in Short-Term Incubated Agricultural Soil of the North China Plain," Agriculture, MDPI, vol. 11(12), pages 1-12, December.
    17. Mansour, Elsayed & Abdul-Hamid, Mohamed I & Yasin, Mohamed T & Qabil, Naglaa & Attia, Ahmed, 2017. "Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 194(C), pages 58-67.
    18. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    19. Sun, Hongyong & Zhang, Xiying & Liu, Xiujing & Liu, Xiuwei & Shao, Liwei & Chen, Suying & Wang, Jintao & Dong, Xinliang, 2019. "Impact of different cropping systems and irrigation schedules on evapotranspiration, grain yield and groundwater level in the North China Plain," Agricultural Water Management, Elsevier, vol. 211(C), pages 202-209.
    20. Sawatdikarn Sanit, 2021. "Induction on Seed Germination and Seeedling Performances against Sunflower (Helainthus annuus L.) and Castor bean (Ricinus communis L.) as influenced by Different Water Stress Treatments," International Journal of Sciences, Office ijSciences, vol. 10(02), pages 41-50, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.