IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v240y2020ics0378377420301402.html
   My bibliography  Save this article

Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China

Author

Listed:
  • Liang, Jiaping
  • He, Zijian
  • Shi, Wenjuan

Abstract

It is still a long-term challenge to improve crop production and economic benefits in arid area of northwest China. The objective of this study was therefore to propose a new and promising cotton/mung bean intercropping (CMBI) system to cope with the challenge based on the traditional monocropping cotton (MC) system. A two-year field experiment was conducted to evaluate crop production and economic benefits between the CMBI and MC systems by analyzing the total land output (TLO), aboveground dry matter, nitrogen uptake, water use efficiency (WUE), nitrogen use efficiency (NUE), partial factor productivity (PFP) of nitrogen, and economic benefits. Experiment treatments consisted of two cropping systems (MC and CMBI systems) and a combination of the CMBI system with different N-fertilizer rates [160 (N160), 315 (N315), 390 (N390), and 475 (N475) kg ha−1 in 2016, and 160 (N160), 315 (N315), and 390 (N390) kg ha−1 in 2017], respectively. All treatments were designed using a randomized complete block with three replications. The results indicated that no significant differences in growth parameters [PH (plant height), SD (stem diameter), and LAI (leaf area index)] of cotton were found between the MC and CMBI systems in 2016 and 2017. Compared with the MC system, however, the CMBI system significantly increased TLO, aboveground dry matter, total N uptake, WUE, NUE, PFP for nitrogen, and economic benefits in 2016 and 2017. The result suggested the CMBI system had greater production advantages and economic benefits than the MC system. In addition, compared to the N160 treatment, other N treatments (N315, N390, and N475) in the CMBI system significantly enhanced crop growth, TLO, total aboveground dry matter, total N uptake, WUE, and economic benefits. However, PFP for nitrogen and NUE significantly decreased with the increase of application N rates. According to analyzing the production functions of different application N treatments, we found that 390 kg ha−1 in the CMBI system might be recommended as an appropriate application N rate to improve crop production and economic benefits in the arid area of northwest China.

Suggested Citation

  • Liang, Jiaping & He, Zijian & Shi, Wenjuan, 2020. "Cotton/mung bean intercropping improves crop productivity, water use efficiency, nitrogen uptake, and economic benefits in the arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:agiwat:v:240:y:2020:i:c:s0378377420301402
    DOI: 10.1016/j.agwat.2020.106277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420301402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    2. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Chengwei & Wang, Ruoshui & Li, Chaonan & Zheng, Chenghao & Dou, Xiaoyu, 2023. "Photosynthetic characteristics, soil nutrients, and their interspecific competitions in an apple–soybean alley cropping system subjected to different drip fertilizer regimes on the Loess Plateau, Chin," Agricultural Water Management, Elsevier, vol. 275(C).
    2. Wang, Wei & Li, Meng-Ying & Gong, Dong-Shan & Zhou, Rui & Khan, Aziz & Zhu, Ying & Zhu, Hao & Abrar, Muhammad & Zhu, Shuang-Guo & Wang, Bao-Zhong & Song, Chao & Xiong, You-Cai, 2022. "Water use of intercropped species: Maize-soybean, soybean-wheat and wheat-maize," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhanqing & Qin, Wei & Bai, Zhaohai & Ma, Lin, 2019. "Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 262-272.
    2. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    3. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    4. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    5. Qingzhen Zhu & Zhihao Zhu & Hengyuan Zhang & Yuanyuan Gao & Liping Chen, 2023. "Design of an Electronically Controlled Fertilization System for an Air-Assisted Side-Deep Fertilization Machine," Agriculture, MDPI, vol. 13(12), pages 1-12, November.
    6. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    7. Xiao Chen & Xiaodong Chen & Jiabin Jiao & Fusuo Zhang & Xinping Chen & Guohua Li & Zhao Song & Eldad Sokolowski & Patricia Imas & Hillel Magen & Amnon Bustan & Yuzhi He & Dasen Xie & Baige Zhang, 2022. "Towards Balanced Fertilizer Management in South China: Enhancing Wax Gourd ( Benincasa hispida ) Yield and Produce Quality," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    8. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    9. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    10. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    11. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    12. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    13. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    14. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.
    15. Li, Jungai & Liu, Hongbin & Wang, Hongyuan & Luo, Jiafa & Zhang, Xuejun & Liu, Zhaohui & Zhang, Yitao & Zhai, Limei & Lei, Qiuliang & Ren, Tianzhi & Li, Yan & Bashir, Muhammad Amjad, 2018. "Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables," Agricultural Water Management, Elsevier, vol. 210(C), pages 354-363.
    16. Shen Yuan & Bruce A. Linquist & Lloyd T. Wilson & Kenneth G. Cassman & Alexander M. Stuart & Valerien Pede & Berta Miro & Kazuki Saito & Nurwulan Agustiani & Vina Eka Aristya & Leonardus Y. Krisnadi &, 2021. "Sustainable intensification for a larger global rice bowl," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    17. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).
    18. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    19. Feifei Pan & Sha Pan & Jiao Tang & Jingping Yuan & Huaixia Zhang & Bihua Chen, 2022. "Fertilization Practices: Optimization in Greenhouse Vegetable Cultivation with Different Planting Years," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    20. Diaz-Gonzalez, Freddy A. & Vuelvas, Jose. & Vallejo, Victoria E. & Patino, D., 2023. "Fertilization rate optimization model for potato crops to maximize yield while reducing polluting nitrogen emissions," Ecological Modelling, Elsevier, vol. 485(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:240:y:2020:i:c:s0378377420301402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.