IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v212y2019icp262-272.html
   My bibliography  Save this article

Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China

Author

Listed:
  • Zhao, Zhanqing
  • Qin, Wei
  • Bai, Zhaohai
  • Ma, Lin

Abstract

Agricultural nitrogen (N) and phosphorus (P) emissions to water bodies remain largely unknown in China, mainly due to the lack of reliable data sources and quantification tools. In this study, we constructed a grid-based NUFER (NUtrient Flow in food chains, Environment and Resources use) model in order to quantify a high-resolution agricultural N and P emissions to water bodies in Haihe Basin in 2012, based on data collected from county-level statistics, farm interview, and spatial data of topography, climate, soil texture, and land use. We also explored the mitigation strategies in 2030 via scenario analysis. The results showed that total agricultural N emission to water bodies in Haihe Basin was 1079 Gg N in 2012, of which cropland contributed 54%; total agricultural P emission to water bodies was 208 Gg P, livestock contributed 78%. There were large spatial variations in agricultural N and P emissions. Overall, the plain areas accounted for around 80% of the total agricultural N and P emissions to water in 2012. The highest N and P emission intensities were 10 t N km−2 and 2 t P km−2, respectively. N and P emissions were significantly related to anthropogenic factors (such as the livestock density and cropland) in the plain areas; whereas in mountainous areas, both anthropogenic and natural factors (e.g., slope deviation and soil texture) significantly affected N and P emissions. Our scenario analysis suggests that agricultural N and P emissions can be reduced by up to 45% and 77%, respectively for N and P in 2030, via improved agricultural and environmental policies, technologies and managements. The prohibition of direct animal manure discharge to the water system seems to be the most effective measure to mitigate the emissions. Our study provided a high-resolution agricultural N and P emissions to the water bodies of Haihe Basin and identified the most effective options to reduce these emissions in highly intensified agricultural areas.

Suggested Citation

  • Zhao, Zhanqing & Qin, Wei & Bai, Zhaohai & Ma, Lin, 2019. "Agricultural nitrogen and phosphorus emissions to water and their mitigation options in the Haihe Basin, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 262-272.
  • Handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:262-272
    DOI: 10.1016/j.agwat.2018.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418308850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinping Chen & Zhenling Cui & Mingsheng Fan & Peter Vitousek & Ming Zhao & Wenqi Ma & Zhenlin Wang & Weijian Zhang & Xiaoyuan Yan & Jianchang Yang & Xiping Deng & Qiang Gao & Qiang Zhang & Shiwei Guo , 2014. "Producing more grain with lower environmental costs," Nature, Nature, vol. 514(7523), pages 486-489, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zou, Tingting & Meng, Fanlei & Zhou, Jichen & Ying, Hao & Liu, Xuejun & Hou, Yong & Zhao, Zhengxiong & Zhang, Fusuo & Xu, Wen, 2023. "Quantifying nitrogen and phosphorus losses from crop and livestock production and mitigation potentials in Erhai Lake Basin, China," Agricultural Systems, Elsevier, vol. 211(C).
    2. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    3. Liu, Wenlong & Youssef, Mohamed A. & Birgand, François P. & Chescheir, George M. & Tian, Shiying & Maxwell, Bryan M., 2020. "Processes and mechanisms controlling nitrate dynamics in an artificially drained field: Insights from high-frequency water quality measurements," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Zhenghong Zhang & Fu Zhang & Zhengzhong Zhang & Xuhu Wang, 2023. "Study on Water Quality Change Trend and Its Influencing Factors from 2001 to 2021 in Zuli River Basin in the Northwestern Part of the Loess Plateau, China," Sustainability, MDPI, vol. 15(8), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Jie & Bai, Zhaohai & Velthof, Gerard L. & Wu, Zhiguo & Chadwick, David & Ma, Lin, 2019. "Accumulation and leaching of nitrate in soils in wheat-maize production in China," Agricultural Water Management, Elsevier, vol. 212(C), pages 407-415.
    2. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    3. Zhang, Bangbang & Li, Xian & Chen, Haibin & Niu, Wenhao & Kong, Xiangbin & Yu, Qiang & Zhao, Minjuan & Xia, Xianli, 2022. "Identifying opportunities to close yield gaps in China by use of certificated cultivars to estimate potential productivity," Land Use Policy, Elsevier, vol. 117(C).
    4. Qingzhen Zhu & Zhihao Zhu & Hengyuan Zhang & Yuanyuan Gao & Liping Chen, 2023. "Design of an Electronically Controlled Fertilization System for an Air-Assisted Side-Deep Fertilization Machine," Agriculture, MDPI, vol. 13(12), pages 1-12, November.
    5. Jun Li & Jiali Xing & Rui Ding & Wenjiao Shi & Xiaoli Shi & Xiaoqing Wang, 2023. "Systematic Evaluation of Nitrogen Application in the Production of Multiple Crops and Its Environmental Impacts in Fujian Province, China," Agriculture, MDPI, vol. 13(3), pages 1-17, March.
    6. Xiao Chen & Xiaodong Chen & Jiabin Jiao & Fusuo Zhang & Xinping Chen & Guohua Li & Zhao Song & Eldad Sokolowski & Patricia Imas & Hillel Magen & Amnon Bustan & Yuzhi He & Dasen Xie & Baige Zhang, 2022. "Towards Balanced Fertilizer Management in South China: Enhancing Wax Gourd ( Benincasa hispida ) Yield and Produce Quality," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    7. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    8. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    9. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    10. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    11. Wang, Linlin & Li, Lingling & Xie, Junhong & Luo, Zhuzhu & Sumera, Anwar & Zechariah, Effah & Fudjoe, Setor Kwami & Palta, Jairo A. & Chen, Yinglong, 2022. "Does plastic mulching reduce water footprint in field crops in China? A meta-analysis," Agricultural Water Management, Elsevier, vol. 260(C).
    12. Thongsouk Sompouviset & Yanting Ma & Eakkarin Sukkaew & Zhaoxia Zheng & Ai Zhang & Wei Zheng & Ziyan Li & Bingnian Zhai, 2023. "The Effects of Plastic Mulching Combined with Different Fertilizer Applications on Greenhouse Gas Emissions and Intensity, and Apple Yield in Northwestern China," Agriculture, MDPI, vol. 13(6), pages 1-23, June.
    13. Wang, Xiaolong & Chen, Yuanquan & Sui, Peng & Yan, Peng & Yang, Xiaolei & Gao, Wangsheng, 2017. "Preliminary analysis on economic and environmental consequences of grain production on different farm sizes in North China Plain," Agricultural Systems, Elsevier, vol. 153(C), pages 181-189.
    14. Li, Jungai & Liu, Hongbin & Wang, Hongyuan & Luo, Jiafa & Zhang, Xuejun & Liu, Zhaohui & Zhang, Yitao & Zhai, Limei & Lei, Qiuliang & Ren, Tianzhi & Li, Yan & Bashir, Muhammad Amjad, 2018. "Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables," Agricultural Water Management, Elsevier, vol. 210(C), pages 354-363.
    15. Shen Yuan & Bruce A. Linquist & Lloyd T. Wilson & Kenneth G. Cassman & Alexander M. Stuart & Valerien Pede & Berta Miro & Kazuki Saito & Nurwulan Agustiani & Vina Eka Aristya & Leonardus Y. Krisnadi &, 2021. "Sustainable intensification for a larger global rice bowl," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Liu, Jianliang & Huang, Xinya & Jiang, Haibo & Chen, Huai, 2021. "Sustaining yield and mitigating methane emissions from rice production with plastic film mulching technique," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Liu, Lianhua & Ouyang, Wei & Wang, Yidi & Lian, Zhongmin & Pan, Junting & Liu, Hongbin & Chen, Jingrui & Niu, Shiwei, 2023. "Paddy water managements for diffuse nitrogen and phosphorus pollution control in China: A comprehensive review and emerging prospects," Agricultural Water Management, Elsevier, vol. 277(C).
    18. Feifei Pan & Sha Pan & Jiao Tang & Jingping Yuan & Huaixia Zhang & Bihua Chen, 2022. "Fertilization Practices: Optimization in Greenhouse Vegetable Cultivation with Different Planting Years," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    19. Diaz-Gonzalez, Freddy A. & Vuelvas, Jose. & Vallejo, Victoria E. & Patino, D., 2023. "Fertilization rate optimization model for potato crops to maximize yield while reducing polluting nitrogen emissions," Ecological Modelling, Elsevier, vol. 485(C).
    20. Rushan Chai & Lidong Huang & Lingling Li & Gerty Gielen & Hailong Wang & Yongsong Zhang, 2016. "Degradation of Tetracyclines in Pig Manure by Composting with Rice Straw," IJERPH, MDPI, vol. 13(3), pages 1-9, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:262-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.