IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v233y2020ics0378377419313186.html
   My bibliography  Save this article

Lateral inner environment changes and effects on emitter clogging risk for different irrigation times

Author

Listed:
  • Zhang, Wenqian
  • Niu, Wenquan
  • Li, Guochun
  • Wang, Jie
  • Wang, Yanbang
  • Dong, Aihong

Abstract

Emitter clogging is one of the most important limiting factors affecting the promotion of drip irrigation. To examine the impact of the irrigation time on the lateral environment and to develop an optimal way to mitigate the emitter clogging risk, 4 different irrigation times (3, 7, 10 and 30 times) were examined with each irrigation period lasting 2 daily hours. Then, the lateral inner environment was studied from the perspectives of the mass, particle size composition, mineral composition, microbial content of the sediment in the lateral (includes sediment deposited in and adhered to the lateral, DS and AS, respectively). The index of the emitter clogging risk was used to indicate the emitter clogging level of the drip irrigation system. The results indicated that emitter clogging risk (Rec) was significantly correlated with the DS mass, AS mass, rate of change of the AS mass and fractal dimension (p < 0.01), and the AS mass was correlated with the bacterial content in the AS (p < 0.05). This finding indicates that Rec was affected by the lateral inner environment. The DS affected the changes in Rec, mainly through influencing the mass of clogging substances in the grid structures and the particle size across the labyrinth channel. The increasing AS captures nutrients and provides a suitable environment for the growth of bacteria in the laterals, inlet grid and labyrinth channel. Additionally, the mass of clogging substances (mainly the AS) increased steadily during the process of particle adhesion, which leads to irreversible clogging. The Rec declined rapidly in the initial stage of irrigation and then gradually decreased over the irrigation duration. There was a boundary between short and long irrigation times (between irrigation times of approximately 7 and 10 in this research), which was the optimum lateral flushing period.

Suggested Citation

  • Zhang, Wenqian & Niu, Wenquan & Li, Guochun & Wang, Jie & Wang, Yanbang & Dong, Aihong, 2020. "Lateral inner environment changes and effects on emitter clogging risk for different irrigation times," Agricultural Water Management, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:agiwat:v:233:y:2020:i:c:s0378377419313186
    DOI: 10.1016/j.agwat.2020.106069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419313186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Peng & Li, Yunkai & Zhou, Bo & Zhou, Chunfa & Zhang, Zhijing & Li, Jiusheng, 2017. "Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water," Agricultural Water Management, Elsevier, vol. 184(C), pages 36-45.
    2. Ravina, I. & Paz, E. & Sofer, Z. & Marm, A. & Schischa, A. & Sagi, G. & Yechialy, Z. & Lev, Y., 1997. "Control of clogging in drip irrigation with stored treated municipal sewage effluent," Agricultural Water Management, Elsevier, vol. 33(2-3), pages 127-137, June.
    3. Puig-Bargues, J. & Arbat, G. & Barragan, J. & Ramirez de Cartagena, F., 2005. "Hydraulic performance of drip irrigation subunits using WWTP effluents," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 249-262, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ni Gao & Yan Mo & Jiandong Wang & Luhua Yang & Shihong Gong, 2022. "Effects of Flow Path Geometrical Parameters on the Hydraulic Performance of Variable Flow Emitters at the Conventional Water Supply Stage," Agriculture, MDPI, vol. 12(10), pages 1-17, September.
    2. Zhang, Wenqian & Lv, Chang & Zhao, Xue & Dong, Aihong & Niu, Wenquan, 2021. "The influence mechanism of the main suspended particles of Yellow River sand on the emitter clogging − An attempt to improve the irrigation water utilization efficiency in Yellow River basin," Agricultural Water Management, Elsevier, vol. 258(C).
    3. Duran-Ros, Miquel & Puig-Bargués, Jaume & Cufí, Sílvia & Solé-Torres, Carles & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2022. "Effect of different filter media on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Shen, Yan & Puig-Bargués, Jaume & Li, Mengyao & Xiao, Yang & Li, Qiang & Li, Yunkai, 2022. "Physical, chemical and biological emitter clogging behaviors in drip irrigation systems using high-sediment loaded water," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Petit, Julien & García, Sílvia Mas & Molle, Bruno & Bendoula, Ryad & Ait-Mouheb, Nassim, 2022. "Methods for drip irrigation clogging detection, analysis and understanding: State of the art and perspectives," Agricultural Water Management, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Siqi & Li, Yunkai & Zhou, Bo & Liu, Zeyuan & Feng, Ji & Xiao, Yang, 2019. "An in-situ accelerated experimental testing method for drip irrigation emitter clogging with inferior water," Agricultural Water Management, Elsevier, vol. 212(C), pages 136-154.
    2. Petit, Julien & García, Sílvia Mas & Molle, Bruno & Bendoula, Ryad & Ait-Mouheb, Nassim, 2022. "Methods for drip irrigation clogging detection, analysis and understanding: State of the art and perspectives," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Liu, Haijun & Huang, Guanhua, 2009. "Laboratory experiment on drip emitter clogging with fresh water and treated sewage effluent," Agricultural Water Management, Elsevier, vol. 96(5), pages 745-756, May.
    4. Oliver, M.M.H. & Hewa, G.A. & Pezzaniti, D., 2014. "Bio-fouling of subsurface type drip emitters applying reclaimed water under medium soil thermal variation," Agricultural Water Management, Elsevier, vol. 133(C), pages 12-23.
    5. Duran-Ros, Miquel & Puig-Bargués, Jaume & Cufí, Sílvia & Solé-Torres, Carles & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2022. "Effect of different filter media on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 266(C).
    6. Song, Peng & Li, Yunkai & Zhou, Bo & Zhou, Chunfa & Zhang, Zhijing & Li, Jiusheng, 2017. "Controlling mechanism of chlorination on emitter bio-clogging for drip irrigation using reclaimed water," Agricultural Water Management, Elsevier, vol. 184(C), pages 36-45.
    7. Duran-Ros, M. & Puig-Bargués, J. & Arbat, G. & Barragán, J. & Cartagena, F. Ramírez de, 2009. "Effect of filter, emitter and location on clogging when using effluents," Agricultural Water Management, Elsevier, vol. 96(1), pages 67-79, January.
    8. Mohammad ZAMANIYAN & Rouhollah FATAHI & Saeed BOROOMAND-NASAB, 2014. "Field performance evaluation of micro irrigation systems in Iran," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(3), pages 135-142.
    9. Oliver, M.M.H. & Hewa, Guna Alankerage & Pezzaniti, David, 2016. "Thermal variation and pressure compensated emitters," Agricultural Water Management, Elsevier, vol. 176(C), pages 29-39.
    10. Muhammad, Tahir & Zhou, Bo & Puig-Bargu´es, Jaume & Ding, Can & Li, Shuqin & Manan, Irum & Zhou, Yunpeng & Liu, Zeyuan & Li, Yunkai, 2022. "Assessment of emitter clogging with multiple fouling and root intrusion in sub-surface drip irrigation during 5-year sugarcane growth," Agricultural Water Management, Elsevier, vol. 274(C).
    11. Puig-Bargués, J. & Arbat, G. & Elbana, M. & Duran-Ros, M. & Barragán, J. & de Cartagena, F. Ramírez & Lamm, F.R., 2010. "Effect of flushing frequency on emitter clogging in microirrigation with effluents," Agricultural Water Management, Elsevier, vol. 97(6), pages 883-891, June.
    12. Zhou, Bo & Wang, Tianzhi & Li, Yunkai & Bralts, Vincent, 2017. "Effects of microbial community variation on bio-clogging in drip irrigation emitters using reclaimed water," Agricultural Water Management, Elsevier, vol. 194(C), pages 139-149.
    13. Zhangzhong, Lili & Yang, Peiling & Zhen, Wengang & Zhang, Xin & Wang, Caiyuan, 2019. "A kinetic model for the chemical clogging of drip irrigation system using saline water," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Puig-Bargues, J. & Arbat, G. & Barragan, J. & Ramirez de Cartagena, F., 2005. "Hydraulic performance of drip irrigation subunits using WWTP effluents," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 249-262, August.
    15. Schwarz, Dietmar & Grosch, Rita & Gross, Wolfgang & Hoffmann-Hergarten, Sabine, 2005. "Water quality assessment of different reservoir types in relation to nutrient solution use in hydroponics," Agricultural Water Management, Elsevier, vol. 71(2), pages 145-166, February.
    16. Liu, Zeyuan & Xiao, Yang & Li, Yunkai & Zhou, Bo & Feng, Ji & Han, Siqi & Muhammad, Tahir, 2019. "Influence of operating pressure on emitter anti-clogging performance of drip irrigation system with high-sediment water," Agricultural Water Management, Elsevier, vol. 213(C), pages 174-184.
    17. Liu, Zeyuan & Ma, Changjian & Xiao, Yang & Lili, Zhangzhong & Muhammad, Tahir & Li, Yunkai, 2023. "Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 285(C).
    18. Solé-Torres, Carles & Puig-Bargués, Jaume & Duran-Ros, Miquel & Arbat, Gerard & Pujol, Joan & Ramírez de Cartagena, Francisco, 2019. "Effect of different sand filter underdrain designs on emitter clogging using reclaimed effluents," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Zhou, Hongxu & Li, Yunkai & Wang, Yan & Zhou, Bo & Bhattarai, Rabin, 2019. "Composite fouling of drip emitters applying surface water with high sand concentration: Dynamic variation and formation mechanism," Agricultural Water Management, Elsevier, vol. 215(C), pages 25-43.
    20. Miquel Duran-Ros & Joan Pujol & Toni Pujol & Sílvia Cufí & Gerard Arbat & Francisco Ramírez de Cartagena & Jaume Puig-Bargués, 2023. "Solid Removal across the Bed Depth in Media Filters for Drip Irrigation Systems," Agriculture, MDPI, vol. 13(2), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:233:y:2020:i:c:s0378377419313186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.