IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v224y2019ic16.html
   My bibliography  Save this article

Effects of partial root-zone drying and deficit irrigation on yield, irrigation water-use efficiency and some potato (Solanum tuberosum L.) quality traits under glasshouse conditions

Author

Listed:
  • Elhani, Sliman
  • Haddadi, Maroua
  • Csákvári, Edina
  • Zantar, Said
  • Hamim, Ahlam
  • Villányi, Vanda
  • Douaik, Ahmed
  • Bánfalvi, Zsófia

Abstract

Agriculture water resources are expected to decline due to increasing water demand and ongoing climate change. In this context, water-saving irrigation techniques, such as partial-root zone drying (PRD) and deficit irrigation (DI) were assessed under glasshouse conditions on potato cultivar Mondial. Four irrigation levels were applied: 50, 70, 80 and 100% of field capacity during 2016 and 2017 growing seasons. The results showed that the yield penalty with PRD was similar to that caused by DI. Nevertheless, PRD plants had higher number of stems and were shorter than DI plants. Sugar and protein contents of tubers gradually decreased with water restriction, however, remained higher in PRD than DI tubers. In contrast, the amounts of polyphenols and antioxidants increased in tubers with decreasing irrigation levels. Untargeted metabolite analysis revealed higher metabolite content of PRD than DI tubers with less decrease in glucose and fructose concentrations and with double amount of mannitol. Transcript level of key-genes involved in carbohydrate metabolism was elevated at 20% water-saving in PRD tubers, but not in DI tubers. We assumed that the detected changes in tubers reflect better adaptation of plants to water-saving irrigation under PRD than DI.

Suggested Citation

  • Elhani, Sliman & Haddadi, Maroua & Csákvári, Edina & Zantar, Said & Hamim, Ahlam & Villányi, Vanda & Douaik, Ahmed & Bánfalvi, Zsófia, 2019. "Effects of partial root-zone drying and deficit irrigation on yield, irrigation water-use efficiency and some potato (Solanum tuberosum L.) quality traits under glasshouse conditions," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:224:y:2019:i:c:16
    DOI: 10.1016/j.agwat.2019.105745
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419304391
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.105745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Yan, Boyuan, 2008. "Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 659-668, June.
    2. Hu, Tiantian & Kang, Shaozhong & Li, Fusheng & Zhang, Jianhua, 2009. "Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize," Agricultural Water Management, Elsevier, vol. 96(2), pages 208-214, February.
    3. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field-grown potatoes: Gas exchange and xylem [ABA]," Agricultural Water Management, Elsevier, vol. 97(10), pages 1486-1494, October.
    4. Liu, Caixia & Rubæk, Gitte H. & Liu, Fulai & Andersen, Mathias N., 2015. "Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato," Agricultural Water Management, Elsevier, vol. 159(C), pages 66-76.
    5. Jensen, Christian R. & Battilani, Adriano & Plauborg, Finn & Psarras, Georgios & Chartzoulakis, Kostas & Janowiak, Franciszek & Stikic, Radmila & Jovanovic, Zorica & Li, Guitong & Qi, Xuebin & Liu, Fu, 2010. "Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes," Agricultural Water Management, Elsevier, vol. 98(3), pages 403-413, December.
    6. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    7. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    8. Yactayo, Wendy & Ramírez, David A. & Gutiérrez, Raymundo & Mares, Víctor & Posadas, Adolfo & Quiroz, Roberto, 2013. "Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 123(C), pages 65-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. Wang, Haidong & Cheng, Minghui & Zhang, Shaohui & Fan, Junliang & Feng, Hao & Zhang, Fucang & Wang, Xiukang & Sun, Lijun & Xiang, Youzhen, 2021. "Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods," Agricultural Water Management, Elsevier, vol. 256(C).
    3. Wu, Peng & Liu, Fu & Wang, Junying & Liu, Yihan & Gao, Yuan & Zhang, Xuanqi & Chen, Guangzhou & Huang, Fangyuan & Ahmad, Shakeel & Zhang, Peng & Cai, Tie & Jia, Zhikuan, 2022. "Suitable fertilization depth can improve the water productivity and maize yield by regulating development of the root system," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    2. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Kundu, Bimal Chandra & Barman, Alak & Murad, Khandakar Faisal Ibn & Akter, Farzana, 2019. "Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    3. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Kadaja, Jüri & Saue, Triin, 2016. "Potential effects of different irrigation and drainage regimes on yield and water productivity of two potato varieties under Estonian temperate climate," Agricultural Water Management, Elsevier, vol. 165(C), pages 61-71.
    5. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    6. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    7. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    8. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    9. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.
    10. Ramírez, David A. & Yactayo, Wendy & Rens, Libby R. & Rolando, José L. & Palacios, Susan & De Mendiburu, Felipe & Mares, Víctor & Barreda, Carolina & Loayza, Hildo & Monneveux, Philippe & Zotarelli, L, 2016. "Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato," Agricultural Water Management, Elsevier, vol. 177(C), pages 369-378.
    11. Jia, Dianyong & Dai, Xinglong & Xie, Yuli & He, Mingrong, 2021. "Alternate furrow irrigation improves grain yield and nitrogen use efficiency in winter wheat," Agricultural Water Management, Elsevier, vol. 244(C).
    12. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    13. Tang, Li-Song & Li, Yan & Zhang, Jianhua, 2010. "Partial rootzone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area," Agricultural Water Management, Elsevier, vol. 97(10), pages 1527-1533, October.
    14. Plauborg, Finn & Abrahamsen, Per & Gjettermann, Birgitte & Mollerup, Mikkel & Iversen, Bo V. & Liu, Fulai & Andersen, Mathias N. & Hansen, Søren, 2010. "Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(3), pages 425-439, December.
    15. Zhang, Qiang & Wu, Shen & Chen, Chu & Shu, Liang-Zuo & Zhou, Xiu-Jie & Zhu, Sheng-Nan, 2014. "Regulation of nitrogen forms on growth of eggplant under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 142(C), pages 56-65.
    16. Topak, Ramazan & Acar, Bilal & Uyanöz, Refik & Ceyhan, Ercan, 2016. "Performance of partial root-zone drip irrigation for sugar beet production in a semi-arid area," Agricultural Water Management, Elsevier, vol. 176(C), pages 180-190.
    17. Yang, Xin & Bornø, Marie Louise & Wei, Zhenhua & Liu, Fulai, 2021. "Combined effect of partial root drying and elevated atmospheric CO2 on the physiology and fruit quality of two genotypes of tomato plants with contrasting endogenous ABA levels," Agricultural Water Management, Elsevier, vol. 254(C).
    18. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    19. Li, Quanqi & Bian, Chengyue & Liu, Xinhui & Ma, Changjian & Liu, Quanru, 2015. "Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain," Agricultural Water Management, Elsevier, vol. 153(C), pages 71-76.
    20. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:224:y:2019:i:c:16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.