IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v214y2019icp47-54.html
   My bibliography  Save this article

Xylem plays an important role in regulating the leaf water potential and fruit quality of Meiwa kumquat (Fortunella crassifolia Swingle) trees under drought conditions

Author

Listed:
  • Iwasaki, Naoto
  • Hori, Kyouka
  • Ikuta, Yuri

Abstract

Drought induce various physiological changes such as flowering advancement and carbohydrate accumulation in many plants. Soil water deficit (SWD) has been shown to significantly increase the number of first-flush summertime flowers in the ever-flowering Meiwa kumquat (Fortunella crassifolia Swingle). In this study, we examined how SWD affects transpiration and the accumulation of soluble sugars in various parts of the plant as a result of osmoregulation. Despite the rapid decrease in the transpiration of the leaves, that of the stem remained unchanged during SWD treatment at one-eighth of that from the leaves under non-stressed conditions. The SWD treatment increased the total soluble sugar content in all plant parts, except the leaves. Increase in the monosaccharides such as glucose and fructose being greater than for the disaccharide sucrose, in the stems of shoots more than 3 years of age as well as in the xylem of scaffold branches, is suggesting that these increased sugar levels were due to osmoregulation. The sucrose content decreased markedly during the 4 months after SWD treatment in the xylem of scaffold branches but was significantly higher in the fruit that were harvested from SWD-treated trees at 4 months after SWD treatment. These results suggest that the sugars that are accumulated in the xylem positively affect fruit growth after SWD treatment.

Suggested Citation

  • Iwasaki, Naoto & Hori, Kyouka & Ikuta, Yuri, 2019. "Xylem plays an important role in regulating the leaf water potential and fruit quality of Meiwa kumquat (Fortunella crassifolia Swingle) trees under drought conditions," Agricultural Water Management, Elsevier, vol. 214(C), pages 47-54.
  • Handle: RePEc:eee:agiwat:v:214:y:2019:i:c:p:47-54
    DOI: 10.1016/j.agwat.2018.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418316056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gasque, María & Martí, Pau & Granero, Beatriz & González-Altozano, Pablo, 2016. "Effects of long-term summer deficit irrigation on ‘Navelina’ citrus trees," Agricultural Water Management, Elsevier, vol. 169(C), pages 140-147.
    2. García-Tejero, I. & Jiménez-Bocanegra, J.A. & Martínez, G. & Romero, R. & Durán-Zuazo, V.H. & Muriel-Fernández, J.L., 2010. "Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard [Citrus sinensis (L.) Osbeck, cv. salustiano]," Agricultural Water Management, Elsevier, vol. 97(5), pages 614-622, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Zhaoquan & Fan, Jiangchuan & Li, Zhiqiang, 2021. "Dynamic simulation water storage of different parts in peach tree under drought stress," Agricultural Water Management, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rallo, Giovanni & González-Altozano, Pablo & Manzano-Juárez, Juan & Provenzano, Giuseppe, 2017. "Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 180(PA), pages 136-147.
    2. Jamshidi, Sajad & Zand-Parsa, Shahrokh & Kamgar-Haghighi, Ali Akbar & Shahsavar, Ali Reza & Niyogi, Dev, 2020. "Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    3. Puig-Sirera, Àngela & Provenzano, Giuseppe & González-Altozano, Pablo & Intrigliolo, Diego S. & Rallo, Giovanni, 2021. "Irrigation water saving strategies in Citrus orchards: Analysis of the combined effects of timing and severity of soil water deficit," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G., 2017. "Sour orange rootstock increases water productivity in deficit irrigated ‘Verna’ lemon trees compared with Citrus macrophylla," Agricultural Water Management, Elsevier, vol. 186(C), pages 98-107.
    5. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).
    6. Jafari, Mohammad & Kamali, Hamidreza & Keshavarz, Ali & Momeni, Akbar, 2021. "Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate," Agricultural Water Management, Elsevier, vol. 248(C).
    7. Temnani, Abdelmalek & Berríos, Pablo & Zapata-García, Susana & Pérez-Pastor, Alejandro, 2023. "Deficit irrigation strategies of flat peach trees under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Wang, Dong & Zhang, Huihui & Gartung, Jim, 2020. "Long-term productivity of early season peach trees under different irrigation methods and postharvest deficit irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    9. Maestre-Valero, J.F. & Martin-Gorriz, B. & Alarcón, J.J. & Nicolas, E. & Martinez-Alvarez, V., 2016. "Economic feasibility of implementing regulated deficit irrigation with reclaimed water in a grapefruit orchard," Agricultural Water Management, Elsevier, vol. 178(C), pages 119-125.
    10. Panigrahi, P. & Sharma, R.K. & Hasan, M. & Parihar, S.S., 2014. "Deficit irrigation scheduling and yield prediction of ‘Kinnow’ mandarin (Citrus reticulate Blanco) in a semiarid region," Agricultural Water Management, Elsevier, vol. 140(C), pages 48-60.
    11. Zheng, Shunsheng & Jiang, Shouzheng & Cui, Ningbo & Zhao, Lu & Gong, Daozhi & Wang, Yaosheng & Wu, Zongjun & Liu, Quanshan, 2023. "Deficit drip irrigation improves kiwifruit quality and water productivity under rain-shelter cultivation in the humid area of South China," Agricultural Water Management, Elsevier, vol. 289(C).
    12. Liu, Y. & Tao, Y. & Wan, K.Y. & Zhang, G.S. & Liu, D.B. & Xiong, G.Y. & Chen, F., 2012. "Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China," Agricultural Water Management, Elsevier, vol. 110(C), pages 34-40.
    13. Pagay, V., 2016. "Effects of irrigation regime on canopy water use and dry matter production of ‘Tempranillo’ grapevines in the semi-arid climate of Southern Oregon, USA," Agricultural Water Management, Elsevier, vol. 178(C), pages 271-280.
    14. Robles, J.M. & Botía, P. & Pérez-Pérez, J.G, 2016. "Subsurface drip irrigation affects trunk diameter fluctuations in lemon trees, in comparison with surface drip irrigation," Agricultural Water Management, Elsevier, vol. 165(C), pages 11-21.
    15. Gutiérrez-Gordillo, S. & Durán-Zuazo, V.H. & García-Tejero, I., 2019. "Response of three almond cultivars subjected to different irrigation regimes in Guadalquivir river basin," Agricultural Water Management, Elsevier, vol. 222(C), pages 72-81.
    16. Panigrahi, P. & Srivastava, A.K. & Huchche, A.D., 2012. "Effects of drip irrigation regimes and basin irrigation on Nagpur mandarin agronomical and physiological performance," Agricultural Water Management, Elsevier, vol. 104(C), pages 79-88.
    17. Peng Gao & Jiaxing Xie & Mingxin Yang & Ping Zhou & Wenbin Chen & Gaotian Liang & Yufeng Chen & Xiongzhe Han & Weixing Wang, 2021. "Improved Soil Moisture and Electrical Conductivity Prediction of Citrus Orchards Based on IoT Using Deep Bidirectional LSTM," Agriculture, MDPI, vol. 11(7), pages 1-22, July.
    18. Panigrahi, P. & Srivastava, A.K. & Panda, D.K. & Huchche, A.D., 2017. "Rainwater, soil and nutrients conservation for improving productivity of citrus orchards in a drought prone region," Agricultural Water Management, Elsevier, vol. 185(C), pages 65-77.
    19. Silveira, Laís Karina & Pavão, Glaucia Cristina & dos Santos Dias, Carlos Tadeu & Quaggio, José Antonio & Pires, Regina Célia de Matos, 2020. "Deficit irrigation effect on fruit yield, quality and water use efficiency: A long-term study on Pêra-IAC sweet orange," Agricultural Water Management, Elsevier, vol. 231(C).
    20. Faci, J.M. & Blanco, O. & Medina, E.T. & Martínez-Cob, A., 2014. "Effect of post veraison regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 73-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:214:y:2019:i:c:p:47-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.