IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v213y2019icp76-86.html
   My bibliography  Save this article

The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China

Author

Listed:
  • Ali, Shahzad
  • Xu, Yueyue
  • Ahmad, Irshad
  • Jia, Qianmin
  • Ma, Xiangcheng
  • Sohail, Amir
  • Manzoor,
  • Arif, Muhammad
  • Ren, Xiaolong
  • Cai, Tie
  • Zhang, Jiahua
  • Jia, Zhikuan

Abstract

Agricultural productivity in semi-arid regions of China relies on the ridge furrow (RF) micro rainfall harvesting system, and supplemental irrigation reduces damage caused by drought stress. However, the extent to which the interactive effects of supplemental irrigation and simulated rainfall conditions can further improve winter wheat production and radiation use efficiency (RUE) remains unknown. Therefore, a mobile rainproof shelter was used to explore the potential benefit of the RF system under four supplemental irrigation (150, 75, 37, 0 mm) levels and three simulated rainfall (275, 200, 125 mm) levels. Data collected over two years indicated that the interactive effects of supplemental irrigation (150 mm) with simulated rainfall concentration (200 mm) could significantly improve the LAI (88.8%), Pn value (21.3%), PAR interception efficiency (In; 34.1%), interception of PAR accumulation (IPAR) (58.9%), RUE (11.2%), and PAR capture ratio (97.1%), due to reduction in the PAR reflection ratio (45.2%), canopy light transmittance (LT) (78.5%), and PAR penetration ratio (83.8%), and significantly increase the grain yield (60.0%) as compared to that of the RF3150 treatment. Consequently, this RF system significantly improved the grain yield, with earlier development and rapid plant growth during each growth stage of winter wheat, at each supplemental irrigation and simulated rainfall level. The results suggest that in semi-arid regions of China, where water shortage is a serious problem, the RF2150 treatment should be adopted as standard farming practice for improving crop growth, LAI, photosynthesis, efficient conversion of intercepted solar radiation by apical dominance, IPAR, RUE, total DMA, and winter wheat production.

Suggested Citation

  • Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
  • Handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:76-86
    DOI: 10.1016/j.agwat.2018.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418315683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    2. Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Wang, Jinniu, 2009. "Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 96(3), pages 374-382, March.
    3. Zhang, Jiyang & Sun, Jingsheng & Duan, Aiwang & Wang, Jinglei & Shen, Xiaojun & Liu, Xiaofei, 2007. "Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 41-47, August.
    4. Xie, Zhong-kui & Wang, Ya-jun & Li, Feng-min, 2005. "Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China," Agricultural Water Management, Elsevier, vol. 75(1), pages 71-83, July.
    5. Li, Quanqi & Chen, Yuhai & Liu, Mengyu & Zhou, Xunbo & Yu, Songlie & Dong, Baodi, 2008. "Effects of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in North China," Agricultural Water Management, Elsevier, vol. 95(4), pages 469-476, April.
    6. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    7. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    8. Qi Wang & Enhe Zhang & Fengmin Li & Fengrui Li, 2008. "Runoff Efficiency and the Technique of Micro-water Harvesting with Ridges and Furrows, for Potato Production in Semi-arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1431-1443, October.
    9. Payero, José O. & Tarkalson, David D. & Irmak, Suat & Davison, Don & Petersen, James L., 2008. "Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate," Agricultural Water Management, Elsevier, vol. 95(8), pages 895-908, August.
    10. Oweis, Theib & Hachum, Ahmed, 2006. "Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 57-73, February.
    11. Li, Xiao-Yan & Gong, Jia-Dong & Gao, Qian-Zhao & Li, Feng-Rui, 2001. "Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions," Agricultural Water Management, Elsevier, vol. 50(3), pages 173-183, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiao-Ling & Duan, Pei-Ling & Yang, Shen-Jiao & Liu, Yu-Hua & Qi, Lin & Shi, Jiang & Li, Xue-Lin & Song, Peng & Zhang, Li-Xia, 2020. "Corn compensatory growth upon post-drought rewatering based on the effects of rhizosphere soil nitrification on cytokinin," Agricultural Water Management, Elsevier, vol. 241(C).
    2. Gao, Riping & Pan, Zhihua & Zhang, Jun & Chen, Xiao & Qi, Yinglong & Zhang, Ziyuan & Chen, Shaoqing & Jiang, Kang & Ma, Shangqian & Wang, Jialin & Huang, Zhefan & Cai, Linlin & Wu, Yao & Guo, Ning & X, 2023. "Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China," Agricultural Water Management, Elsevier, vol. 283(C).
    3. Ahmad, Irshad & Yan, Zhengang & Kamran, Muhammad & Ikram, Khushnuma & Ghani, Muhammad Usman & Hou, Fujiang, 2022. "Nitrogen management and supplemental irrigation affected greenhouse gas emissions, yield and nutritional quality of fodder maize in an arid region," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Munyasya, Alex Ndolo & Koskei, Kiprotich & Zhou, Rui & Liu, Shu-Tong & Indoshi, Sylvia Ngaira & Wang, Wei & Zhang, Xu-Cheng & Cheruiyot, Wesly Kiprotich & Mburu, David Mwehia & Nyende, Aggrey Bernard , 2022. "Integrated on-site & off-site rainwater-harvesting system boosts rainfed maize production for better adaptation to climate change," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Fang, Heng & Liu, Fulai & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2022. "The effect of source–sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization," Agricultural Water Management, Elsevier, vol. 267(C).
    6. Wang, Xiao-Ling & Sun, Run-Hong & Wu, Di & Qi, Lin & Liu, Yu-Hua & Shi, Jiang & Li, Xue-Lin & Song, Peng & Zhang, Li-Xia, 2021. "Increasing corn compensatory growth upon post-drought rewatering using ammonia-oxidising bacterial strain inoculation," Agricultural Water Management, Elsevier, vol. 256(C).
    7. Zhang, Xuemei & Wang, Rui & Liu, Bo & Wang, Youcai & Yang, Linchuan & Zhao, Ji & Xu, Jing & Li, Zhimin & Zhang, Xudong & Han, Qingfang, 2023. "Optimization of ridge–furrow mulching ratio enhances precipitation collection before silking to improve maize yield in a semi–arid region," Agricultural Water Management, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jialin & Pan, Zhihua & Pan, Feifei & He, Di & Pan, Yuying & Han, Guolin & Huang, Na & Zhang, Ziyuan & Yin, Wenjuan & Zhang, Jiale & Peng, Ruiqi & Wang, Zizhong, 2020. "The regional water-conserving and yield-increasing characteristics and suitability of soil tillage practices in Northern China," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    3. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    5. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    6. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    7. Ali, Shahzad & Ma, Xiangcheng & Jia, Qianmin & Ahmad, Irshad & Ahmad, Shakeel & Sha, Zhang & Yun, Bai & Muhammad, Adil & Ren, Xiaolong & shah, Shahen & Akbar, Habib & Cai, Tie & Zhang, Jiahua & Jia, Z, 2019. "Supplemental irrigation strategy for improving grain filling, economic return, and production in winter wheat under the ridge and furrow rainwater harvesting system," Agricultural Water Management, Elsevier, vol. 226(C).
    8. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Wei, Ting & Ren, Xiaolong & Zhang, Peng & Din, Ruixia & Cai, Tie & Jia, Zhikuan, 2018. "Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 201(C), pages 207-218.
    9. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    10. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    11. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    12. Bu, Ling-duo & Liu, Jian-liang & Zhu, Lin & Luo, Sha-sha & Chen, Xin-ping & Li, Shi-qing & Lee Hill, Robert & Zhao, Ying, 2013. "The effects of mulching on maize growth, yield and water use in a semi-arid region," Agricultural Water Management, Elsevier, vol. 123(C), pages 71-78.
    13. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ma, Xiangcheng & Ahmad, Irshad & Adnan, Muhammad & Gerard, Rushingabigwi & Ren, Xiaolong & Zhang, Peng & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2018. "Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions," Agricultural Water Management, Elsevier, vol. 207(C), pages 1-14.
    14. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    15. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    16. Gu, Xiao-Bo & Li, Yuan-Nong & Du, Ya-Dan, 2018. "Effects of ridge-furrow film mulching and nitrogen fertilization on growth, seed yield and water productivity of winter oilseed rape (Brassica napus L.) in Northwestern China," Agricultural Water Management, Elsevier, vol. 200(C), pages 60-70.
    17. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    18. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    19. Yildirim, Demet & Cemek, Bilal & Unlukara, Ali, 2022. "The effect of mulched ridge and furrow micro catchment water harvesting on red pepper yield and quality features in Bafra Plain of Northern Turkey," Agricultural Water Management, Elsevier, vol. 262(C).
    20. Zhang, Zhe & Zhang, Yanqing & Sun, Zhanxiang & Zheng, Jiaming & Liu, Enke & Feng, Liangshan & Feng, Chen & Si, Pengfei & Bai, Wei & Cai, Qian & Yang, Ning & van der Werf, Wopke & Zhang, Lizhen, 2019. "Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 212(C), pages 203-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:213:y:2019:i:c:p:76-86. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.