IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v201y2018icp207-218.html
   My bibliography  Save this article

Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions

Author

Listed:
  • Ali, Shahzad
  • Xu, Yueyue
  • Jia, Qianmin
  • Ahmad, Irshad
  • Wei, Ting
  • Ren, Xiaolong
  • Zhang, Peng
  • Din, Ruixia
  • Cai, Tie
  • Jia, Zhikuan

Abstract

Determining the effect of different cultivation techniques on photosynthetic characteristics, dry matter translocation and water use efficiency (WUE) will provide insight for the development of water-saving farming systems and exploiting the photosynthetic characteristics of winter wheat under deficit irrigation. In the current study, a mobile rainproof shelter was used to explore the potential role of two cultivation techniques: (1) the ridge and furrow precipitation harvesting technique (R); and (2) the flat cultivation technique (F), under two levels of deficit irrigation (150, 75 mm) levels and three levels of rainfall (1: 275, 2: 200, 3: 125 mm). We found that cultivation technique had a significant effect on rainfall water harvesting and enhanced soil water content under all levels of deficit irrigation and simulated precipitation. Under the R cultivation technique with 150 mm deficit irrigation and 200 mm simulated rainfall level can efficiently improve moisture content, thus significantly increased the average net photosynthetic rate (Pn) (10.4%), stomatal conductance (Gs) (27.2%), transpiration rate (Tr) (9.3%), intercellular CO2 concentration (Ci) (4.0%), dry matter translocation (31.6%), translocation efficiency (15.2%), pre-flowering assimilate translocation to grain (10.6%), grain yield (18.9%), WUE (75.8%) and economic return (12197 Yuan ha−1) of winter wheat, while significantly reduce (32.7%) ET rate compared with F cultivation technique. The R cultivation technique significantly improved photosynthetic characteristics such as Pn, Gs, Tr, Ci and dry matter translocation in the later growth stage (grain filling stage) compared with the F cultivation technique at each irrigation and rainfall level. Furthermore, these photosynthetic parameters were positively correlated with dry matter translocation, soil water content and grain yield. The greatest improvement in the photosynthetic characteristics, translocation efficiency, WUE, grain production and economic return was achieved when using the R cultivation technique with 150 mm deficit irrigation and 200 mm simulated rainfall (R2150). Therefore, we conclude that the R2150 treatment is the best water-saving management strategy for growing wheat crops in rain-fed farming systems.

Suggested Citation

  • Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Wei, Ting & Ren, Xiaolong & Zhang, Peng & Din, Ruixia & Cai, Tie & Jia, Zhikuan, 2018. "Cultivation techniques combined with deficit irrigation improves winter wheat photosynthetic characteristics, dry matter translocation and water use efficiency under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 201(C), pages 207-218.
  • Handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:207-218
    DOI: 10.1016/j.agwat.2018.01.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418300660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.01.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Shou-Chen & Duan, Ai-Wang & Wang, Rui & Guan, Zhong-Mei & Yang, Shen-Jiao & Ma, Shou-Tian & Shao, Yun, 2015. "Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 123-129.
    2. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    3. Shi, Jianchu & Yasuor, Hagai & Yermiyahu, Uri & Zuo, Qiang & Ben-Gal, Alon, 2014. "Dynamic responses of wheat to drought and nitrogen stresses during re-watering cycles," Agricultural Water Management, Elsevier, vol. 146(C), pages 163-172.
    4. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    5. Fabeiro, C. & Martin de Santa Olalla, F. & de Juan, J. A., 2001. "Yield and size of deficit irrigated potatoes," Agricultural Water Management, Elsevier, vol. 48(3), pages 255-266, June.
    6. Qi Wang & Enhe Zhang & Fengmin Li & Fengrui Li, 2008. "Runoff Efficiency and the Technique of Micro-water Harvesting with Ridges and Furrows, for Potato Production in Semi-arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1431-1443, October.
    7. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    8. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.
    9. Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Wang, Jinniu, 2009. "Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 96(3), pages 374-382, March.
    10. Sun, Hong-Yong & Liu, Chang-Ming & Zhang, Xi-Ying & Shen, Yan-Jun & Zhang, Yong-Qiang, 2006. "Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 211-218, September.
    11. Zhang, Jiyang & Sun, Jingsheng & Duan, Aiwang & Wang, Jinglei & Shen, Xiaojun & Liu, Xiaofei, 2007. "Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 41-47, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yueyue & Ma, Xiangcheng & Wang, Yingxin & Ali, Shahzad & Cai, Tie & Jia, Zhikuan, 2020. "Effects of ridge-furrow mulching system with supplementary irrigation on soil respiration in winter wheat fields under different rainfall conditions," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Surendran, U. & Madhava Chandran, K., 2022. "Development and evaluation of drip irrigation and fertigation scheduling to improve water productivity and sustainable crop production using HYDRUS," Agricultural Water Management, Elsevier, vol. 269(C).
    3. Dai, Yulong & Fan, Junliang & Liao, Zhenqi & Zhang, Chen & Yu, Jiang & Feng, Hanlong & Zhang, Fucang & Li, Zhijun, 2022. "Supplemental irrigation and modified plant density improved photosynthesis, grain yield and water productivity of winter wheat under ridge-furrow mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Li, Yangyang & Liu, Ningning & Fan, Hua & Su, Jixia & Fei, Cong & Wang, Kaiyong & Ma, Fuyu & Kisekka, Isaya, 2019. "Effects of deficit irrigation on photosynthesis, photosynthate allocation, and water use efficiency of sugar beet," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Fang, Heng & Liu, Fulai & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2022. "The effect of source–sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization," Agricultural Water Management, Elsevier, vol. 267(C).
    6. Jingwei Wang & Wenquan Niu & Yuan Li, 2020. "Effects of Drip Irrigation with Plastic on Photosynthetic Characteristics and Biomass Distribution of Muskmelon," Agriculture, MDPI, vol. 10(3), pages 1-15, March.
    7. Guo, Jinjin & Fan, Junliang & Xiang, Youzhen & Zhang, Fucang & Yan, Shicheng & Zhang, Xueyan & Zheng, Jing & Hou, Xianghao & Tang, Zijun & Li, Zhijun, 2022. "Maize leaf functional responses to blending urea and slow-release nitrogen fertilizer under various drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    2. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
    3. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    4. Ali, Shahzad & Ma, Xiangcheng & Jia, Qianmin & Ahmad, Irshad & Ahmad, Shakeel & Sha, Zhang & Yun, Bai & Muhammad, Adil & Ren, Xiaolong & shah, Shahen & Akbar, Habib & Cai, Tie & Zhang, Jiahua & Jia, Z, 2019. "Supplemental irrigation strategy for improving grain filling, economic return, and production in winter wheat under the ridge and furrow rainwater harvesting system," Agricultural Water Management, Elsevier, vol. 226(C).
    5. Liu, E.K. & Mei, X.R. & Yan, C.R. & Gong, D.Z. & Zhang, Y.Q., 2016. "Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes," Agricultural Water Management, Elsevier, vol. 167(C), pages 75-85.
    6. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ma, Xiangcheng & Ahmad, Irshad & Adnan, Muhammad & Gerard, Rushingabigwi & Ren, Xiaolong & Zhang, Peng & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2018. "Interactive effects of plastic film mulching with supplemental irrigation on winter wheat photosynthesis, chlorophyll fluorescence and yield under simulated precipitation conditions," Agricultural Water Management, Elsevier, vol. 207(C), pages 1-14.
    7. Wang, Wangtian & Ma, Li & Wu, Junyan & Sun, Wancang & Ali, Shahzad & Yang, Gang & Pu, Yuanyuan & Liu, Lijun & Fang, Yan, 2023. "Cultivation practices with various mulching materials to regulate chlorophyll fluorescence, cuticular wax, and rapeseed productivity under semi-arid regions," Agricultural Water Management, Elsevier, vol. 288(C).
    8. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    9. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    10. Ma, Shou-Chen & Duan, Ai-Wang & Wang, Rui & Guan, Zhong-Mei & Yang, Shen-Jiao & Ma, Shou-Tian & Shao, Yun, 2015. "Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 123-129.
    11. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    12. Gao, Xiaoyu & Bai, Yining & Huo, Zailin & Xu, Xu & Huang, Guanhua & Xia, Yuhong & Steenhuis, Tammo S., 2017. "Deficit irrigation enhances contribution of shallow groundwater to crop water consumption in arid area," Agricultural Water Management, Elsevier, vol. 185(C), pages 116-125.
    13. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    14. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    15. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Fangyuan, Huang & Daur, Ihsanullah & Wei, Ting & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "The ridge furrow cropping technique indirectly improves seed filling endogenous hormonal changes and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 138-148.
    16. Wang, Jialin & Pan, Zhihua & Pan, Feifei & He, Di & Pan, Yuying & Han, Guolin & Huang, Na & Zhang, Ziyuan & Yin, Wenjuan & Zhang, Jiale & Peng, Ruiqi & Wang, Zizhong, 2020. "The regional water-conserving and yield-increasing characteristics and suitability of soil tillage practices in Northern China," Agricultural Water Management, Elsevier, vol. 228(C).
    17. Zhang, Buchong & Li, Feng-Min & Huang, Gaobao & Cheng, Zi-Yong & Zhang, Yanhong, 2006. "Yield performance of spring wheat improved by regulated deficit irrigation in an arid area," Agricultural Water Management, Elsevier, vol. 79(1), pages 28-42, January.
    18. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    19. Ma, Shou-tian & Wang, Tong-chao & Ma, Shou-Chen, 2022. "Effects of drip irrigation on root activity pattern, root-sourced signal characteristics and yield stability of winter wheat," Agricultural Water Management, Elsevier, vol. 271(C).
    20. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:201:y:2018:i:c:p:207-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.