IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v212y2019icp203-210.html
   My bibliography  Save this article

Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate

Author

Listed:
  • Zhang, Zhe
  • Zhang, Yanqing
  • Sun, Zhanxiang
  • Zheng, Jiaming
  • Liu, Enke
  • Feng, Liangshan
  • Feng, Chen
  • Si, Pengfei
  • Bai, Wei
  • Cai, Qian
  • Yang, Ning
  • van der Werf, Wopke
  • Zhang, Lizhen

Abstract

Plastic film mulch increases crop yields in rain-fed agriculture in cool semi-arid climates by warming the soil and reducing evaporative water losses. The semi-arid Khorchin area in Northeast China is an important production area for rain-fed maize. Drought stress occurs frequently, even if plastic film mulch is applied at sowing. We hypothesized that the yield and water capture of maize could be increased by reducing evaporative loss of water by use of plastic film cover during the autumn and winter preceding sowing. In this study, we compared maize growth, water uptake and yield in three film cover treatments: (1) film cover from the autumn before maize sowing until maize harvest (autumn mulching: AM), (2) film cover from maize sowing till harvest (conventional practice) (spring mulching: SM), (3) no film cover (no mulch: NM). Field experiments were conducted in Fuxin city, Khorchin region, Liaoning province, China in 2013/2014 and 2014/2015. Autumn mulching increased grain yield on average by 18% when compared to spring mulching and by 36% when compared to no mulching. The 1000-kernel weight in AM was 7% higher than in SM, and 12% higher than in NM. Soil water content in the root zone before sowing was 35 mm greater in AM than in SM and NM. Water uptake during the growing season was 34 mm greater in AM than in SM and NM. Water use efficiency for grain yield (yield per unit water uptake) in AM was on average 2.5% higher than in conventional mulching (SM) and 27% higher than in NM. Autumn mulching advanced development, with an advance of 5 days in tasseling time as compared to SM and 10 days when compared to NM. These results show that film cover during the fallow period before maize sowing can increase crop yield and water use efficiency, and reduce climate risks in rain-fed agriculture under semi-arid conditions.

Suggested Citation

  • Zhang, Zhe & Zhang, Yanqing & Sun, Zhanxiang & Zheng, Jiaming & Liu, Enke & Feng, Liangshan & Feng, Chen & Si, Pengfei & Bai, Wei & Cai, Qian & Yang, Ning & van der Werf, Wopke & Zhang, Lizhen, 2019. "Plastic film cover during the fallow season preceding sowing increases yield and water use efficiency of rain-fed spring maize in a semi-arid climate," Agricultural Water Management, Elsevier, vol. 212(C), pages 203-210.
  • Handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:203-210
    DOI: 10.1016/j.agwat.2018.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418303548
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Xiaolong & Jia, Zhikuan & Chen, Xiaoli, 2008. "Rainfall concentration for increasing corn production under semiarid climate," Agricultural Water Management, Elsevier, vol. 95(12), pages 1293-1302, December.
    2. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J. & Tian, X.H., 2013. "Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China," Agricultural Water Management, Elsevier, vol. 116(C), pages 39-49.
    3. Zhao, Hong & Xiong, You-Cai & Li, Feng-Min & Wang, Run-Yuan & Qiang, Sheng-Cai & Yao, Tao-Feng & Mo, Fei, 2012. "Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem," Agricultural Water Management, Elsevier, vol. 104(C), pages 68-78.
    4. Xinchuang Xu & Quansheng Ge & Jingyun Zheng & Erfu Dai & Xuezhen Zhang & Shanfeng He & Guangxu Liu, 2013. "Agricultural drought risk analysis based on three main crops in prefecture-level cities in the monsoon region of east China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1257-1272, March.
    5. Wang, Xiao-Ling & Li, Feng-Min & Jia, Yu & Shi, Wen-Quan, 2005. "Increasing potato yields with additional water and increased soil temperature," Agricultural Water Management, Elsevier, vol. 78(3), pages 181-194, December.
    6. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Can ridge-furrow plastic mulching replace irrigation in dryland wheat and maize cropping systems?," Agricultural Water Management, Elsevier, vol. 190(C), pages 1-5.
    7. Xingyang Yu & Xingyuan He & Haifeng Zheng & Ruichao Guo & Zhibin Ren & Dan Zhang & Jixiang Lin, 2014. "Spatial and temporal analysis of drought risk during the crop-growing season over northeast China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 275-289, March.
    8. Bai, Wei & Sun, Zhanxiang & Zheng, Jiaming & Du, Guijuan & Feng, Liangshan & Cai, Qian & Yang, Ning & Feng, Chen & Zhang, Zhe & Evers, Jochem B. & van der Werf, Wopke & Zhang, Lizhen, 2016. "Mixing trees and crops increases land and water use efficiencies in a semi-arid area," Agricultural Water Management, Elsevier, vol. 178(C), pages 281-290.
    9. Qi Wang & Enhe Zhang & Fengmin Li & Fengrui Li, 2008. "Runoff Efficiency and the Technique of Micro-water Harvesting with Ridges and Furrows, for Potato Production in Semi-arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1431-1443, October.
    10. Li, Xiao-Yan & Gong, Jia-Dong & Gao, Qian-Zhao & Li, Feng-Rui, 2001. "Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions," Agricultural Water Management, Elsevier, vol. 50(3), pages 173-183, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Binbin & Su, Shunshun & Duan, Chenxiao & Feng, Hao & Chau, Henry Wai & He, Jianqiang & Li, Yi & Hill, Robert Lee & Wu, Shufang & Zou, Yufeng, 2022. "Effects of partial organic fertilizer replacement combined with rainwater collection system on soil water, nitrate-nitrogen and apple yield of rainfed apple orchard in the Loess Plateau of China: A 3-," Agricultural Water Management, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jialin & Pan, Zhihua & Pan, Feifei & He, Di & Pan, Yuying & Han, Guolin & Huang, Na & Zhang, Ziyuan & Yin, Wenjuan & Zhang, Jiale & Peng, Ruiqi & Wang, Zizhong, 2020. "The regional water-conserving and yield-increasing characteristics and suitability of soil tillage practices in Northern China," Agricultural Water Management, Elsevier, vol. 228(C).
    2. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    3. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    4. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    5. Zhang, Feng & Zhang, Wenjuan & Li, Ming & Zhang, Yuan & Li, Fengmin & Li, Changbin, 2017. "Is crop biomass and soil carbon storage sustainable with long-term application of full plastic film mulching under future climate change?," Agricultural Systems, Elsevier, vol. 150(C), pages 67-77.
    6. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
    7. Liu, Xiaoli & Wang, Yandong & Yan, Xiaoqun & Hou, Huizhi & Liu, Pei & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2020. "Appropriate ridge-furrow ratio can enhance crop production and resource use efficiency by improving soil moisture and thermal condition in a semi-arid region," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Bouma, Jetske A. & Hegde, Seema S. & Lasage, Ralph, 2016. "Assessing the returns to water harvesting: A meta-analysis," Agricultural Water Management, Elsevier, vol. 163(C), pages 100-109.
    9. Liu, Pei & Wang, Hongli & Li, Linchao & Liu, Xiaoli & Qian, Rui & Wang, Jinjin & Yan, Xiaoqun & Cai, Tie & Zhang, Peng & Jia, Zhikuan & Ren, Xiaolong & Chen, Xiaoli, 2020. "Ridge-furrow mulching system regulates hydrothermal conditions to promote maize yield and efficient water use in rainfed farming area," Agricultural Water Management, Elsevier, vol. 232(C).
    10. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    11. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    12. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    13. Zhao, Ying & Zhai, Xiafei & Wang, Zhaohui & Li, Huijie & Jiang, Rui & Lee Hill, Robert & Si, Bing & Hao, Feng, 2018. "Simulation of soil water and heat flow in ridge cultivation with plastic film mulching system on the Chinese Loess Plateau," Agricultural Water Management, Elsevier, vol. 202(C), pages 99-112.
    14. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    15. Lisson, S.N. & Tarbath, M. & Corkrey, R. & Pinkard, E.A. & Laycock, B. & Howden, S.M. & Botwright Acuña, T. & Makin, A., 2016. "Ambient climate and soil effects on the headspace under clear mulch film," Agricultural Systems, Elsevier, vol. 142(C), pages 41-50.
    16. Gu, Xiao-Bo & Li, Yuan-Nong & Du, Ya-Dan, 2018. "Effects of ridge-furrow film mulching and nitrogen fertilization on growth, seed yield and water productivity of winter oilseed rape (Brassica napus L.) in Northwestern China," Agricultural Water Management, Elsevier, vol. 200(C), pages 60-70.
    17. Zhang, Guangxin & Meng, Wenhui & Pan, Wenhui & Han, Juan & Liao, Yuncheng, 2022. "Effect of soil water content changes caused by ridge-furrow plastic film mulching on the root distribution and water use pattern of spring maize in the Loess Plateau," Agricultural Water Management, Elsevier, vol. 261(C).
    18. Hou, Xianqing & Li, Rong, 2019. "Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    19. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    20. Yin, Minhua & Li, Yuannong & Fang, Heng & Chen, Pengpeng, 2019. "Biodegradable mulching film with an optimum degradation rate improves soil environment and enhances maize growth," Agricultural Water Management, Elsevier, vol. 216(C), pages 127-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:203-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.