IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v212y2019icp99-110.html
   My bibliography  Save this article

Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions

Author

Listed:
  • Abdelkhalik, Abdelsattar
  • Pascual-Seva, Nuria
  • Nájera, Inmaculada
  • Giner, Alfonso
  • Baixauli, Carlos
  • Pascual, Bernardo

Abstract

Water is an essential resource for food production, as agriculture consumes close to 70% of the total freshwater, and its shortage is becoming critical in arid and semiarid areas of the world. Therefore, it is important to use water more efficiently. The objectives of this project are to determine the productive response and the irrigation water use efficiency of seedless watermelon to three irrigation management strategies over two growing seasons. This was done by applying 100, 75 and 50% of the irrigation water requirements (IWR) the first year, in the second year added six additional treatments, of which three treatments were regulated deficit irrigation with 75% IWR during the vegetative growth, fruit development and fruit ripening stages, and the other three treatments were with 50% IWR during the same stages. The exposure of watermelon plants to severe deficit irrigation resulted in a reduction in dry biomass, total and marketable yield, average fruit weight, fruit number and harvest index, and without improvement of marketable fruit quality. The fruit ripening was the less sensitive stage to water deficits. Relative water content and cell membrane stability index decreased as the water deficit increased. Irrigation water use efficiency decreased to a lesser extend during the fruit ripening stage than when water restriction were applied during different growth stages. If water is readily available, irrigating with 100% of water requirements is recommended, but in the case of water scarcity, applying water shortage during fruit ripening stage would be advisable.

Suggested Citation

  • Abdelkhalik, Abdelsattar & Pascual-Seva, Nuria & Nájera, Inmaculada & Giner, Alfonso & Baixauli, Carlos & Pascual, Bernardo, 2019. "Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 212(C), pages 99-110.
  • Handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:99-110
    DOI: 10.1016/j.agwat.2018.08.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418313234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.08.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabello, M.J. & Castellanos, M.T. & Romojaro, F. & Martnez-Madrid, C. & Ribas, F., 2009. "Yield and quality of melon grown under different irrigation and nitrogen rates," Agricultural Water Management, Elsevier, vol. 96(5), pages 866-874, May.
    2. Pascual-Seva, N. & San Bautista, A. & López-Galarza, S. & Maroto, J.V. & Pascual, B., 2016. "Response of drip-irrigated chufa (Cyperus esculentus L. var. sativus Boeck.) to different planting configurations: Yield and irrigation water-use efficiency," Agricultural Water Management, Elsevier, vol. 170(C), pages 140-147.
    3. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    4. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    5. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    6. Yang, Hui & Du, Taisheng & Qiu, Rangjian & Chen, Jinliang & Wang, Feng & Li, Yang & Wang, Chenxia & Gao, Lihong & Kang, Shaozhong, 2017. "Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 193-204.
    7. Abd El-Mageed, Taia A. & Semida, Wael M. & Abd El-Wahed, Mohamed H., 2016. "Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil," Agricultural Water Management, Elsevier, vol. 173(C), pages 1-12.
    8. Tolk, Judy A. & Howell, Terry A., 2003. "Water use efficiencies of grain sorghum grown in three USA southern Great Plains soils," Agricultural Water Management, Elsevier, vol. 59(2), pages 97-111, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Yavuz, Duran & Seymen, Musa & Süheri, Sinan & Yavuz, Nurcan & Türkmen, Önder & Kurtar, Ertan Sait, 2020. "How do rootstocks of citron watermelon (Citrullus lanatus var. citroides) affect the yield and quality of watermelon under deficit irrigation?," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Zinkernagel, Jana & Maestre-Valero, Jose. F. & Seresti, Sogol Y. & Intrigliolo, Diego S., 2020. "New technologies and practical approaches to improve irrigation management of open field vegetable crops," Agricultural Water Management, Elsevier, vol. 242(C).
    4. Wang, Zeyi & Yu, Shouchao & Zhang, Hengjia & Lei, Lian & Liang, Chao & Chen, Lili & Su, Dandan & Li, Xuan, 2023. "Deficit mulched drip irrigation improves yield, quality, and water use efficiency of watermelon in a desert oasis region," Agricultural Water Management, Elsevier, vol. 277(C).
    5. Soufiane Lahbouki & Abdelilah Meddich & Raja Ben-Laouane & Abdelkader Outzourhit & Luigi Pari, 2022. "Subsurface Water Retention Technology Promotes Drought Stress Tolerance in Field-Grown Tomato," Energies, MDPI, vol. 15(18), pages 1-13, September.
    6. Bao, Lei & Zhang, Saifeng & Liang, Xinyu & Wang, Peizhou & Guo, Yawen & Sun, Qinghao & Zhou, Jianbin & Chen, Zhujun, 2023. "Intelligent drip fertigation increases water and nutrient use efficiency of watermelon in greenhouse without compromising the yield," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascual-Seva, Núria & San Bautista, Alberto & López-Galarza, Salvador & Maroto, José Vicente & Pascual, Bernardo, 2018. "Influence of different drip irrigation strategies on irrigation water use efficiency on chufa (Cyperus esculentus L. var. sativus Boeck.) crop," Agricultural Water Management, Elsevier, vol. 208(C), pages 406-413.
    2. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    3. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.
    4. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    5. Trevor W. Crosby & Yi Wang, 2021. "Effects of Different Irrigation Management Practices on Potato ( Solanum tuberosum L.)," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    6. Comas, Louise H. & Trout, Thomas J. & DeJonge, Kendall C. & Zhang, Huihui & Gleason, Sean M., 2019. "Water productivity under strategic growth stage-based deficit irrigation in maize," Agricultural Water Management, Elsevier, vol. 212(C), pages 433-440.
    7. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    8. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    9. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    10. Peake, A.S. & Carberry, P.S. & Raine, S.R. & Gett, V. & Smith, R.J., 2016. "An alternative approach to whole-farm deficit irrigation analysis: Evaluating the risk-efficiency of wheat irrigation strategies in sub-tropical Australia," Agricultural Water Management, Elsevier, vol. 169(C), pages 61-76.
    11. Liao, Renkuan & Yang, Peiling & Zhu, Yuanhao & Wu, Wenyong & Ren, Shumei, 2018. "Modeling soil water flow and quantification of root water extraction from different soil layers under multi-chemicals application in dry land field," Agricultural Water Management, Elsevier, vol. 203(C), pages 75-86.
    12. Yenesew Yihun & Abraham Haile & Bart Schultz & Teklu Erkossa, 2013. "Crop Water Productivity of Irrigated Teff in a Water Stressed Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3115-3125, June.
    13. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    14. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    15. Sharma, Sat Pal & Leskovar, Daniel I. & Crosby, Kevin M. & Volder, Astrid & Ibrahim, A.M.H., 2014. "Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 75-85.
    16. Xiangxiang, Wang & Quanjiu, Wang & Jun, Fan & Qiuping, Fu, 2013. "Evaluation of the AquaCrop model for simulating the impact of water deficits and different irrigation regimes on the biomass and yield of winter wheat grown on China's Loess Plateau," Agricultural Water Management, Elsevier, vol. 129(C), pages 95-104.
    17. Memon, Shamim Ara & Sheikh, Irfan Ahemd & Talpur, Mashooque Ali & Mangrio, Munir Ahmed, 2021. "Impact of deficit irrigation strategies on winter wheat in semi-arid climate of sindh," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Zhou, Shiwei & Hu, Xiaotao & Ran, Hui & Wang, Wenè & Hansen, Neil & Cui, Ningbo, 2020. "Optimization of irrigation and nitrogen fertilizer management for spring maize in northwestern China using RZWQM2," Agricultural Water Management, Elsevier, vol. 240(C).
    19. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    20. Cai, Zelin & Bai, Jiaming & Li, Rui & He, Daiwei & Du, Rongcheng & Li, Dayong & Hong, Tingting & Zhang, Zhi, 2023. "Water and nitrogen management scheme of melon based on yield−quality−efficiency matching perspective under CO2 enrichment," Agricultural Water Management, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:212:y:2019:i:c:p:99-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.