IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v202y2018icp285-298.html
   My bibliography  Save this article

Influence of irrigation strategy and mycorrhizal inoculation on fruit quality in different clones of Tempranillo grown under elevated temperatures

Author

Listed:
  • Torres, Nazareth
  • Goicoechea, Nieves
  • Carmen Antolín, M.

Abstract

The projected climate scenario for South Mediterranean Europe predicts lower precipitation and higher temperatures that will negatively affect viticulture in the region. The application of moderate deficit irrigation at crucial moments of berry ripening has been found to improve berry quality. Furthermore, grapevine association with arbuscular mycorrhizal fungi (AMF) may improve grapevine’s ability to cope with abiotic stresses. Therefore, the aims of this research were: (1) to characterize the response of three clones of Vitis vinifera L. cv. Tempranillo to the combination of different water deficit programs and AMF inoculation under elevated temperatures, and (2) to determine whether AMF inoculation can improve berry antioxidant properties under these conditions. The study was carried out on three fruit-bearing cuttings clones of cv. Tempranillo (CL-260, CL-1089 and CL-843) inoculated (+M) or not (−M) with AMF and subjected to two temperature regimes (24/14°C and 28/18°C (day/night)) combined with three irrigation regimes during berry ripening. Irrigation treatments were: (i) water deficit from fruit set to veraison (early deficit, ED); (ii) water deficit from veraison to maturity (late deficit, LD); and (iii) full irrigation (FI). Although each Tempranillo clone seemed to have different abilities to respond to elevated temperatures and water supply, in general, at 24/14°C the LD treatment performed better than ED. Differences among clones were attenuated at 28/18°C. In addition, potential benefits of the LD treatment were improved by AMF inoculation. Thus, in all clones the loss of anthocyanins at 28/18°C detected in −M plants after applying LD did not occur in the +M plants. Moreover, AMF inoculation increased must antioxidant capacity in CL-843 under these environmental conditions. Our results suggest that the implementation of measures to promote the association of grapevines with appropriate AMF for each variety could contribute to optimize effects of irrigation strategy on berry properties under future warming conditions.

Suggested Citation

  • Torres, Nazareth & Goicoechea, Nieves & Carmen Antolín, M., 2018. "Influence of irrigation strategy and mycorrhizal inoculation on fruit quality in different clones of Tempranillo grown under elevated temperatures," Agricultural Water Management, Elsevier, vol. 202(C), pages 285-298.
  • Handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:285-298
    DOI: 10.1016/j.agwat.2017.12.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741730389X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.12.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santesteban, L.G. & Miranda, C. & Royo, J.B., 2011. "Regulated deficit irrigation effects on growth, yield, grape quality and individual anthocyanin composition in Vitis vinifera L. cv. 'Tempranillo'," Agricultural Water Management, Elsevier, vol. 98(7), pages 1171-1179, May.
    2. L. B. Webb & P. H. Whetton & J. Bhend & R. Darbyshire & P. R. Briggs & E. W. R. Barlow, 2012. "Earlier wine-grape ripening driven by climatic warming and drying and management practices," Nature Climate Change, Nature, vol. 2(4), pages 259-264, April.
    3. Costa, J.M. & Vaz, M. & Escalona, J. & Egipto, R. & Lopes, C. & Medrano, H. & Chaves, M.M., 2016. "Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity," Agricultural Water Management, Elsevier, vol. 164(P1), pages 5-18.
    4. Zarrouk, Olfa & Francisco, Rita & Pinto-Marijuan, Marta & Brossa, Ricard & Santos, Raquen Raissa & Pinheiro, Carla & Costa, Joaquim Miguel & Lopes, Carlos & Chaves, Maria Manuela, 2012. "Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine," Agricultural Water Management, Elsevier, vol. 114(C), pages 18-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marko Karoglan & Tomislav Radić & Marina Anić & Željko Andabaka & Domagoj Stupić & Ivana Tomaz & Josip Mesić & Tomislav Karažija & Marko Petek & Boris Lazarević & Milan Poljak & Mirela Osrečak, 2021. "Mycorrhizal Fungi Enhance Yield and Berry Chemical Composition of in Field Grown “Cabernet Sauvignon” Grapevines ( V. vinifera L.)," Agriculture, MDPI, vol. 11(7), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abad, Francisco Javier & Marín, Diana & Loidi, Maite & Miranda, Carlos & Royo, José Bernardo & Urrestarazu, Jorge & Santesteban, Luis Gonzaga, 2019. "Evaluation of the incidence of severe trimming on grapevine (Vitis vinifera L.) water consumption," Agricultural Water Management, Elsevier, vol. 213(C), pages 646-653.
    2. Kizildeniz, T. & Mekni, I. & Santesteban, H. & Pascual, I. & Morales, F. & Irigoyen, J.J., 2015. "Effects of climate change including elevated CO2 concentration, temperature and water deficit on growth, water status, and yield quality of grapevine (Vitis vinifera L.) cultivars," Agricultural Water Management, Elsevier, vol. 159(C), pages 155-164.
    3. Santesteban, L.G. & Miranda, C. & Marín, D. & Sesma, B. & Intrigliolo, D.S. & Mirás-Avalos, J.M. & Escalona, J.M. & Montoro, A. & de Herralde, F. & Baeza, P. & Romero, P. & Yuste, J. & Uriarte, D. & M, 2019. "Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.)," Agricultural Water Management, Elsevier, vol. 221(C), pages 202-210.
    4. Lizama, V. & Pérez-Álvarez, E.P. & Intrigliolo, D.S. & Chirivella, C. & Álvarez, I. & García-Esparza, M.J., 2021. "Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: II. Wine, skins, seeds, and grape aromatic composition," Agricultural Water Management, Elsevier, vol. 256(C).
    5. Douglas K. Bardsley & Annette M. Bardsley & Marco Conedera, 2023. "The dispersion of climate change impacts from viticulture in Ticino, Switzerland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(3), pages 1-25, March.
    6. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    7. Romero, Pascual & Botía, Pablo & del Amor, Francisco M. & Gil-Muñoz, Rocío & Flores, Pilar & Navarro, Josefa María, 2019. "Interactive effects of the rootstock and the deficit irrigation technique on wine composition, nutraceutical potential, aromatic profile, and sensory attributes under semiarid and water limiting condi," Agricultural Water Management, Elsevier, vol. 225(C).
    8. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    9. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    10. Luigino Barisan & Marco Lucchetta & Cristian Bolzonella & Vasco Boatto, 2019. "How Does Carbon Footprint Create Shared Values in the Wine Industry? Empirical Evidence from Prosecco Superiore PDO’s Wine District," Sustainability, MDPI, vol. 11(11), pages 1-13, May.
    11. Buesa, I. & Torres, N. & Tortosa, I. & Marín, D. & Villa-Llop, A. & Douthe, C. & Santesteban, L.G. & Medrano, H. & Escalona, J.M., 2023. "Conventional and newly bred rootstock effects on the ecophysiological response of Vitis vinifera L. cv. Tempranillo," Agricultural Water Management, Elsevier, vol. 289(C).
    12. Zarrouk, Olfa & Francisco, Rita & Pinto-Marijuan, Marta & Brossa, Ricard & Santos, Raquen Raissa & Pinheiro, Carla & Costa, Joaquim Miguel & Lopes, Carlos & Chaves, Maria Manuela, 2012. "Impact of irrigation regime on berry development and flavonoids composition in Aragonez (Syn. Tempranillo) grapevine," Agricultural Water Management, Elsevier, vol. 114(C), pages 18-29.
    13. Petruzzellis, Francesco & Natale, Sara & Bariviera, Luca & Calderan, Alberto & Mihelčič, Alenka & Reščič, Jan & Sivilotti, Paolo & Šuklje, Katja & Lisjak, Klemen & Vanzo, Andreja & Nardini, Andrea, 2022. "High spatial heterogeneity of water stress levels in Refošk grapevines cultivated in Classical Karst," Agricultural Water Management, Elsevier, vol. 260(C).
    14. Amogh Prakasha Kumar & Richard Watt & Laura Meriluoto, 2021. "New Evidence on Using Expert Ratings to Proxy for Wine Quality in Climate Change Research," Working Papers in Economics 21/10, University of Canterbury, Department of Economics and Finance.
    15. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    16. Ma, Xiaochi & Sanguinet, Karen A. & Jacoby, Pete W., 2020. "Direct root-zone irrigation outperforms surface drip irrigation for grape yield and crop water use efficiency while restricting root growth," Agricultural Water Management, Elsevier, vol. 231(C).
    17. Li, Xinxin & Liu, Hongguang & Li, Jing & He, Xinlin & Gong, Ping & Lin, En & Li, Kaiming & Li, Ling & Binley, Andrew, 2020. "Experimental study and multi–objective optimization for drip irrigation of grapes in arid areas of northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    18. Kizildeniz, T. & Irigoyen, J.J & Pascual, I. & Morales, F., 2018. "Simulating the impact of climate change (elevated CO2 and temperature, and water deficit) on the growth of red and white Tempranillo grapevine in three consecutive growing seasons (2013–2015)," Agricultural Water Management, Elsevier, vol. 202(C), pages 220-230.
    19. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    20. Laribi, A.I. & Palou, L. & Intrigliolo, D.S. & Nortes, P.A. & Rojas-Argudo, C. & Taberner, V. & Bartual, J. & Pérez-Gago, M.B., 2013. "Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar de Elche’ at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 125(C), pages 61-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:285-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.