IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v199y2018icp120-137.html
   My bibliography  Save this article

Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil

Author

Listed:
  • Chilundo, Mario
  • Joel, Abraham
  • Wesström, Ingrid
  • Brito, Rui
  • Messing, Ingmar

Abstract

Increased use of irrigation on semi-arid sandy soils requires optimisation of irrigation and fertilisation practices to reduce water and nitrogen (N) losses. Field experiments were conducted on a semi-arid loamy sandy soil in two consecutive cropping periods, one in a cold-dry season (CP-cd) and one in a hot-wet season (CP-hw). The effects of individual treatment factors and their interactions, including two different irrigation methods (furrow – F or drip – D), two irrigation levels (full – If or reduced – Ir) and two top dressing N fertiliser types (quick – Nq or slow – Ns release), on water and N distribution in the soil profile, potential water fluxes to the zone below the roots and N losses from the 0–90 cm soil profile were studied. The concentrations of NO3-N and NH4-N in soil water (from suction cups) and soil (from bulk soil samples) tended to be higher at greater depth in the treatments with lower soil water tension, resulting from the interactions between the factors F or D with If and Nq, most probably resulting from net downward redistribution of N. The IrNs treatments resulted in longer soil water NO3-N and NH4-N residence time at 30 and 60 cm depth, and throughout the two cropping periods NO3-N was higher in Ns than in Nq treatments. Potential faster downward water flux, and thus water losses and the N leaching risk, was concentrated to the first 50–75 days after sowing in FIr and DIr treatments, while it was spread throughout the cropping periods in FIf and DIf. Hence, treatments FIfNq and DIfNq in both CP-cd and CP-hw resulted in the highest estimated N losses from the 0–90 cm soil profile. Based on these results, a combination of D irrigation, Ir irrigation level and Ns fertiliser type should preferably be applied, to avoid the risk of excessive water losses, downward N redistribution and subsequent leaching.

Suggested Citation

  • Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2018. "Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil," Agricultural Water Management, Elsevier, vol. 199(C), pages 120-137.
  • Handle: RePEc:eee:agiwat:v:199:y:2018:i:c:p:120-137
    DOI: 10.1016/j.agwat.2017.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377417304122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2017.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hassanli, Ali Morad & Ebrahimizadeh, Mohammad Ali & Beecham, Simon, 2009. "The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region," Agricultural Water Management, Elsevier, vol. 96(1), pages 93-99, January.
    2. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.
    3. Arbat, G. & Roselló, A. & Domingo Olivé, F. & Puig-Bargués, J. & González Llinàs, E. & Duran-Ros, M. & Pujol, J. & Ramírez de Cartagena, F., 2013. "Soil water and nitrate distribution under drip irrigated corn receiving pig slurry," Agricultural Water Management, Elsevier, vol. 120(C), pages 11-22.
    4. Ajdary, Khalil & Singh, D.K. & Singh, A.K. & Khanna, Manoj, 2007. "Modelling of nitrogen leaching from experimental onion field under drip fertigation," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 15-28, April.
    5. Jia, Xucun & Shao, Lijie & Liu, Peng & Zhao, Bingqiang & Gu, Limin & Dong, Shuting & Bing, So Hwat & Zhang, Jiwang & Zhao, Bin, 2014. "Effect of different nitrogen and irrigation treatments on yield and nitrate leaching of summer maize (Zea mays L.) under lysimeter conditions," Agricultural Water Management, Elsevier, vol. 137(C), pages 92-103.
    6. Gheysari, Mahdi & Mirlatifi, Seyed Majid & Bannayan, Mohammad & Homaee, Mehdi & Hoogenboom, Gerrit, 2009. "Interaction of water and nitrogen on maize grown for silage," Agricultural Water Management, Elsevier, vol. 96(5), pages 809-821, May.
    7. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2021. "Effects of irrigation strategies and soil properties on the characteristics of deep percolation and crop water requirements for a variable rate irrigation system," Agricultural Water Management, Elsevier, vol. 257(C).
    2. Xiao, Chao & Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Li, Yi & Sun, Shikun & Pulatov, Alim, 2021. "Optimizing irrigation amount and fertilization rate of drip-fertigated spring maize in northwest China based on multi-level fuzzy comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 257(C).
    3. Eva Hyánková & Michal Kriška Dunajský & Ondřej Zedník & Ondřej Chaloupka & Miroslava Pumprlová Němcová, 2021. "Irrigation with Treated Wastewater as an Alternative Nutrient Source (for Crop): Numerical Simulation," Agriculture, MDPI, vol. 11(10), pages 1-20, September.
    4. He, Yong & Liang, Hao & Hu, Kelin & Wang, Hongyuan & Hou, Lingling, 2018. "Modeling nitrogen leaching in a spring maize system under changing climate and genotype scenarios in arid Inner Mongolia, China," Agricultural Water Management, Elsevier, vol. 210(C), pages 316-323.
    5. Yan, Shicheng & Wu, You & Fan, Junliang & Zhang, Fucang & Zheng, Jing & Guo, Jinjin & Lu, Junsheng & Wu, Lifeng & Qiang, Shengcai & Xiang, Youzhen, 2022. "Source-sink relationship and yield stability of two maize cultivars in response to water and fertilizer inputs in northwest China," Agricultural Water Management, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guanghao & Zhao, Bin & Dong, Shuting & Zhang, Jiwang & Liu, Peng & Lu, Weiping, 2020. "Controlled-release urea combining with optimal irrigation improved grain yield, nitrogen uptake, and growth of maize," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Chilundo, Mario & Joel, Abraham & Wesström, Ingrid & Brito, Rui & Messing, Ingmar, 2016. "Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand," Agricultural Water Management, Elsevier, vol. 168(C), pages 68-77.
    3. Honghong Ma & Tao Yang & Xinxiang Niu & Zhenan Hou & Xingwang Ma, 2021. "Sound Water and Nitrogen Management Decreases Nitrogen Losses from a Drip-Fertigated Cotton Field in Northwestern China," Sustainability, MDPI, vol. 13(2), pages 1-13, January.
    4. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    5. Wang, Yufeng & Kang, Shaozhong & Li, Fusheng & Zhang, Xiaotao, 2021. "Modified water-nitrogen productivity function based on response of water sensitive index to nitrogen for hybrid maize under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    7. Gudeta Genemo & Habtamu Bedane & Eshetu Mekonen, 2023. "On-farm evaluation of drip irrigation system on coffee production in Western Oromia, Ethiopia," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 13(1), June.
    8. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    9. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    10. Liu, Chunye & Wang, Rui & Wang, Wene & Hu, Xiaotao & Cheng, Yong & Liu, Fulai, 2021. "Effect of fertilizer solution concentrations on filter clogging in drip fertigation systems," Agricultural Water Management, Elsevier, vol. 250(C).
    11. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    12. Tesfamariam, Eyob H. & Annandale, John G. & Steyn, Joachim M. & Stirzaker, Richard J. & Mbakwe, Ikenna, 2015. "Use of the SWB-Sci model for nitrogen management in sludge-amended land," Agricultural Water Management, Elsevier, vol. 152(C), pages 262-276.
    13. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    14. Anik, Asif Reza & Eory, Vera & Begho, Toritseju & Rahman, Md. Mizanur, 2023. "Determinants of nitrogen use efficiency and gaseous emissions assessed from farm survey: A case of wheat in Bangladesh," Agricultural Systems, Elsevier, vol. 206(C).
    15. Žalud, Zdeněk & Hlavinka, Petr & Prokeš, Karel & Semerádová, Daniela & Balek Jan, & Trnka, Miroslav, 2017. "Impacts of water availability and drought on maize yield – A comparison of 16 indicators," Agricultural Water Management, Elsevier, vol. 188(C), pages 126-135.
    16. Pizarro, E. & Galleguillos, M. & Barría, P. & Callejas, R., 2022. "Irrigation management or climate change ? Which is more important to cope with water shortage in the production of table grape in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 263(C).
    17. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    18. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    19. Wang, Haidong & Wu, Lifeng & Wang, Xiukang & Zhang, Shaohui & Cheng, Minghui & Feng, Hao & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen, 2021. "Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation," Agricultural Water Management, Elsevier, vol. 245(C).
    20. Rostamza, Mina & Chaichi, Mohammad-Reza & Jahansouz, Mohammad-Reza & Alimadadi, Ahmad, 2011. "Forage quality, water use and nitrogen utilization efficiencies of pearl millet (Pennisetum americanum L.) grown under different soil moisture and nitrogen levels," Agricultural Water Management, Elsevier, vol. 98(10), pages 1607-1614, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:199:y:2018:i:c:p:120-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.