IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v161y2015icp53-64.html
   My bibliography  Save this article

Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China

Author

Listed:
  • Xiukang, Wang
  • Zhanbin, Li
  • Yingying, Xing

Abstract

In the semi-arid region of the Loess Plateau in China, the use of alternative field management practices is essential for sustainable agriculture. The purpose of this study was to investigate the effect of mulching and fertilization on the soil temperature, soil water content, soil nitrate-N content and grain yield of maize. The experiment was conducted over three consecutive years and used randomly assigned field plots with five replicates. The six treatments consisted of no fertilizer without plastic film (CK), no fertilizer with plastic film (ZM), basal fertilizer without plastic film (BN), basal fertilizer with plastic film (BM), basal and top dressing without plastic film (BTN) and basal and top dressing with plastic film (BTM). The soil temperature of the 10-cm mulching treatment was significantly higher than that of the no-mulching treatment, and the average soil temperature of the mulching treatment increased by 2.3°C before July and nearly 1.2°C after July. The soil water content in the mulching treatment was significantly higher than that in the no-mulching treatment at 0–60cm, which was not significantly different from the 140–200cm depth. The trend in the soil nitrate-N content distribution revealed symmetrical shapes along the center of the furrows, and the standard symmetrical distribution reduced gradually with an increase in soil depth under the plastic film mulching conditions. The soil nitrate-N content under basal fertilizer was 1.65 times higher than that without fertilizer at 0–10cm at 36 days after sowing. The soil nitrate-N content in the topsoil was reduced from 48.67 to 30.77mg/kg after 58 days. We found that plastic film mulching with basal fertilizer increased maize yield by 10.61%, 9.48%, and 15.36%, and top dressing increased the yield by 16.61%, 20.94%, and 12.24% over the three consecutive years. A treatment involving plastic film mulching, basal fertilizer and top dressing is recommended. Further studies are required to investigate the effect of mulching on increased soil temperature, soil water content and soil nitrate-N content, which simultaneously affect yield, and to determine the effects on the field microclimate.

Suggested Citation

  • Xiukang, Wang & Zhanbin, Li & Yingying, Xing, 2015. "Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 161(C), pages 53-64.
  • Handle: RePEc:eee:agiwat:v:161:y:2015:i:c:p:53-64
    DOI: 10.1016/j.agwat.2015.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415300652
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher, P. D., 1995. "An alternative plastic mulching system for improved water management in dryland maize production," Agricultural Water Management, Elsevier, vol. 27(2), pages 155-166, June.
    2. D. McCullough, B. & Wilson, Berry, 2002. "On the accuracy of statistical procedures in Microsoft Excel 2000 and Excel XP," Computational Statistics & Data Analysis, Elsevier, vol. 40(4), pages 713-721, October.
    3. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    4. Wang, Yajun & Xie, Zhongkui & Malhi, Sukhdev S. & Vera, Cecil L. & Zhang, Yubao & Wang, Jinniu, 2009. "Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 96(3), pages 374-382, March.
    5. Wang, Xiaobin & Dai, Kuai & Wang, Yan & Zhang, Xiaomin & Zhao, Quansheng & Wu, Xueping & Cai, Dianxiong & Hoogmoed, W.B. & Oenema, O., 2010. "Nutrient management adaptation for dryland maize yields and water use efficiency to long-term rainfall variability in China," Agricultural Water Management, Elsevier, vol. 97(9), pages 1344-1350, September.
    6. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    7. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    8. Miriti, J.M. & Kironchi, G. & Esilaba, A.O. & Heng, L.K. & Gachene, C.K.K. & Mwangi, D.M., 2012. "Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya," Agricultural Water Management, Elsevier, vol. 115(C), pages 148-155.
    9. Li, Xiao-Yan & Gong, Jia-Dong & Gao, Qian-Zhao & Li, Feng-Rui, 2001. "Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions," Agricultural Water Management, Elsevier, vol. 50(3), pages 173-183, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Zhang & Na Li & Zhanxiang Sun & Guanghua Yin & Yanqing Zhang & Wei Bai & Liangshan Feng & John Yang, 2022. "Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    2. Jing Liang & Jiafan Zhang & Zongmu Yao & Shouyang Luo & Lei Tian & Chunjie Tian & Yu Sun, 2022. "Preliminary Findings of Polypropylene Carbonate (PPC) Plastic Film Mulching Effects on the Soil Microbial Community," Agriculture, MDPI, vol. 12(3), pages 1-13, March.
    3. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Rong Xu & Yating Zhan & Jialan Zhang & Qiang He & Kuan Zhang & Dingde Xu & Yanbin Qi & Xin Deng, 2022. "Does Construction of High-Standard Farmland Improve Recycle Behavior of Agricultural Film? Evidence from Sichuan, China," Agriculture, MDPI, vol. 12(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Ding, Dianyuan & Zhao, Ying & Feng, Hao & Hill, Robert Lee & Chu, Xiaosheng & Zhang, Tibin & He, Jianqiang, 2018. "Soil water utilization with plastic mulching for a winter wheat-summer maize rotation system on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 201(C), pages 246-257.
    3. Li, Yue & Chen, Hao & Feng, Hao & Dong, Qin’ge & Wu, Wenjie & Zou, Yufeng & Chau, Henry Wai & Siddique, Kadambot H.M., 2020. "Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 233(C).
    4. Dong, Qin’ge & Yang, Yuchen & Yu, Kun & Feng, Hao, 2018. "Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 201(C), pages 133-143.
    5. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Zhang, Yan & Ma, Qian & Liu, Donghua & Sun, Lefeng & Ren, Xiaolong & Ali, Shahzad & Zhang, Peng & Jia, Zhikuan, 2018. "Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 208(C), pages 414-421.
    7. Hu, Yajin & Ma, Penghui & Duan, Chenxiao & Wu, Shufang & Feng, Hao & Zou, Yufeng, 2020. "Black plastic film combined with straw mulching delays senescence and increases summer maize yield in northwest China," Agricultural Water Management, Elsevier, vol. 231(C).
    8. Thidar, Myint & Gong, Daozhi & Mei, Xurong & Gao, Lili & Li, Haoru & Hao, Weiping & Gu, Fengxue, 2020. "Mulching improved soil water, root distribution and yield of maize in the Loess Plateau of Northwest China," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Li, Rong & Hou, Xianqing & Jia, Zhikuan & Han, Qingfang & Ren, Xiaolong & Yang, Baoping, 2013. "Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 116(C), pages 101-109.
    10. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    11. Zhang, Runze & Lei, Tong & Wang, Yunfeng & Xu, Jiaxing & Zhang, Panxin & Han, Yan & Hu, Changlu & Yang, Xueyun & Sadras, Victor & Zhang, Shulan, 2022. "Responses of yield and water use efficiency to the interaction between water supply and plastic film mulch in winter wheat-summer fallow system," Agricultural Water Management, Elsevier, vol. 266(C).
    12. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Sohail, Amir & Manzoor, & Arif, Muhammad & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikuan, 2019. "The ridge-furrow system combined with supplemental irrigation strategies to improves radiation use efficiency and winter wheat productivity in semi-arid regions of China," Agricultural Water Management, Elsevier, vol. 213(C), pages 76-86.
    13. Bu, Ling-duo & Liu, Jian-liang & Zhu, Lin & Luo, Sha-sha & Chen, Xin-ping & Li, Shi-qing & Lee Hill, Robert & Zhao, Ying, 2013. "The effects of mulching on maize growth, yield and water use in a semi-arid region," Agricultural Water Management, Elsevier, vol. 123(C), pages 71-78.
    14. Wang, Huan & Fan, Jun & Fu, Wei & Du, Mengge & Zhou, Gu & Zhou, Mingxing & Hao, Mingde & Shao, Ming'an, 2022. "Good harvests of winter wheat from stored soil water and improved temperature during fallow period by plastic film mulching," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Zhang, Dengkui & Wang, Qi & Zhou, Xujiao & Liu, Qinglin & Wang, Xiaoyun & Zhao, Xiaole & Zhao, Wucheng & He, Chenggang & Li, Xiaoling & Li, Guang & Chen, Jin, 2020. "Suitable furrow mulching material for maize and sorghum production with ridge-furrow rainwater harvesting in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 228(C).
    16. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    17. Hu, Yajin & Ma, Penghui & Zhang, Binbin & Hill, Robert L. & Wu, Shufang & Dong, Qin’ge & Chen, Guangjie, 2019. "Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China," Agricultural Water Management, Elsevier, vol. 219(C), pages 59-71.
    18. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    19. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    20. Lian, Yanhao & Ali, Shahzad & Zhang, Xudong & Wang, Tianlu & Liu, Qi & Jia, Qianmin & Jia, Zhikuan & Han, Qingfang, 2016. "Nutrient and tillage strategies to increase grain yield and water use efficiency in semi-arid areas," Agricultural Water Management, Elsevier, vol. 178(C), pages 137-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:161:y:2015:i:c:p:53-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.