IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v145y2014icp171-180.html
   My bibliography  Save this article

An overview of water sharing and participation issues for irrigators and their communities in Alberta: Implications for water policy

Author

Listed:
  • Bjornlund, H.
  • Xu, W.
  • Wheeler, S.

Abstract

Water extraction in many of the world's rivers is reaching unsustainable levels and continued supply of water of adequate quality for human and productive needs is threatened. In response, authorities in many river basins have stopped issuing new water entitlements and there are increased calls to divert less water for consumptive use. New mechanisms for sharing existing water entitlements among competing users are therefore needed. Since agriculture accounts for up to 80% of current water entitlements in many stressed basins, it will have to play a central role in achieving water sharing objectives for a sustainable future. However, attempts to facilitate water sharing have met vocal opposition in many countries and across stakeholder groups. This paper uses the results from a number of studies in Alberta, Canada, to explore some of the underlying reasons for this opposition. It finds that policy makers and water managers’ lack of understanding of what drives irrigators’ behaviour, plus the heterogeneity of the irrigation sector, have been major factors. It recommends that water sharing solutions have to be context specific and take into account the aspirations and interests of people across the society in which they are to be implemented.

Suggested Citation

  • Bjornlund, H. & Xu, W. & Wheeler, S., 2014. "An overview of water sharing and participation issues for irrigators and their communities in Alberta: Implications for water policy," Agricultural Water Management, Elsevier, vol. 145(C), pages 171-180.
  • Handle: RePEc:eee:agiwat:v:145:y:2014:i:c:p:171-180
    DOI: 10.1016/j.agwat.2013.09.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413002680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.09.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perry, Chris, 2011. "Accounting for water use: Terminology and implications for saving water and increasing production," Agricultural Water Management, Elsevier, vol. 98(12), pages 1840-1846, October.
    2. Wheeler, Sarah Ann & Zuo, Alec & Bjornlund, Henning, 2014. "Investigating the delayed on-farm consequences of selling water entitlements in the Murray-Darling Basin," Agricultural Water Management, Elsevier, vol. 145(C), pages 72-82.
    3. Bjornlund, Henning & Nicol, Lorraine & Klein, K.K., 2009. "The adoption of improved irrigation technology and management practices--A study of two irrigation districts in Alberta, Canada," Agricultural Water Management, Elsevier, vol. 96(1), pages 121-131, January.
    4. Bjornlund, Henning & Nicol, Lorraine & Klein, K.K., 2007. "Challenges in implementing economic instruments to manage irrigation water on farms in southern Alberta," Agricultural Water Management, Elsevier, vol. 92(3), pages 131-141, September.
    5. Pumphrey, R. Gary & Edwards, Jeffrey A. & Becker, Klaus G., 2008. "Urban and rural attitudes toward municipal water controls: A study of a semi-arid region with limited water supplies," Ecological Economics, Elsevier, vol. 65(1), pages 1-12, March.
    6. Henning Bjornlund, 2010. "The Competition for Water: Striking a Balance among Social, Environmental, and Economic Needs," C.D. Howe Institute Commentary, C.D. Howe Institute, issue 302, April.
    7. Perry, Chris & Steduto, Pasquale & Allen, Richard. G. & Burt, Charles M., 2009. "Increasing productivity in irrigated agriculture: Agronomic constraints and hydrological realities," Agricultural Water Management, Elsevier, vol. 96(11), pages 1517-1524, November.
    8. Young, Michael D., 2014. "Designing water abstraction regimes for an ever-changing and ever-varying future," Agricultural Water Management, Elsevier, vol. 145(C), pages 32-38.
    9. Sarah Ann Wheeler & Alec Zuo & Henning Bjornlund, 2014. "Australian irrigators' recognition of the need for more environmental water flows and intentions to donate water allocations," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 57(1), pages 104-122, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricart Casadevall, Sandra, 2016. "Improving the management of water multi-functionality through stakeholder involvement in decision-making processes," Utilities Policy, Elsevier, vol. 43(PA), pages 71-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    2. Michailidis, Anastasios & Nastis, Stefanos A. & Loizou, Efstratios & Mattas, Konstadinos, 2010. "The adoption of water saving irrigation practices in the Region of West Macedonia," 120th Seminar, September 2-4, 2010, Chania, Crete 109388, European Association of Agricultural Economists.
    3. Liu, Haijun & Yin, Congyan & Gao, Zhuangzhuang & Hou, Lizhu, 2021. "Evaluation of cucumber yield, economic benefit and water productivity under different soil matric potentials in solar greenhouses in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    5. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    6. Molle, François & Tanouti, Oumaima, 2017. "Squaring the circle: Agricultural intensification vs. water conservation in Morocco," Agricultural Water Management, Elsevier, vol. 192(C), pages 170-179.
    7. Clothier, Brent & Jovanovic, Nebo & Zhang, Xiying, 2020. "Reporting on water productivity and economic performance at the water-food nexus," Agricultural Water Management, Elsevier, vol. 237(C).
    8. Wheeler, Sarah Ann & Zuo, Alec & Loch, Adam, 2015. "Watering the farm: Comparing organic and conventional irrigation water use in the Murray–Darling Basin, Australia," Ecological Economics, Elsevier, vol. 112(C), pages 78-85.
    9. Grafton, Rupert Quentin, 2019. "Policy review of water reform in the Murray– Darling Basin, Australia: the “do’s” and “do’nots”," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(1), January.
    10. Yan, Nana & Wu, Bingfang, 2014. "Integrated spatial–temporal analysis of crop water productivity of winter wheat in Hai Basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 24-33.
    11. Adam Loch & David Adamson, 2015. "Drought and the rebound effect: a Murray–Darling Basin example," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1429-1449, December.
    12. Jinxia Wang & Henning Bjornlund & K. K. Klein & Lijuan Zhang & Wencui Zhang, 2016. "Factors that Influence the Rate and Intensity of Adoption of Improved Irrigation Technologies in Alberta, Canada," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-32, September.
    13. Zuo, Alec & Qiu, Feng & Wheeler, Sarah Ann, 2019. "Examining volatility dynamics, spillovers and government water recovery in Murray-Darling Basin water markets," Resource and Energy Economics, Elsevier, vol. 58(C).
    14. Wu, Bingfang & Jiang, Liping & Yan, Nana & Perry, Chris & Zeng, Hongwei, 2014. "Basin-wide evapotranspiration management: Concept and practical application in Hai Basin, China," Agricultural Water Management, Elsevier, vol. 145(C), pages 145-153.
    15. Tingey-Holyoak, Joanne Louise, 2014. "Water sharing risk in agriculture: Perceptions of farm dam management accountability in Australia," Agricultural Water Management, Elsevier, vol. 145(C), pages 123-133.
    16. Dutta, S. K & Laing, Alison M. & Kumar, S. & Gathala, Mahesh K. & Singh, Ajoy K. & Gaydon, D.S. & Poulton, P., 2020. "Improved water management practices improve cropping system profitability and smallholder farmers’ incomes," Agricultural Water Management, Elsevier, vol. 242(C).
    17. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    18. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    19. Kirby, Mac & Bark, Rosalind & Connor, Jeff & Qureshi, M. Ejaz & Keyworth, Scott, 2014. "Sustainable irrigation: How did irrigated agriculture in Australia's Murray–Darling Basin adapt in the Millennium Drought?," Agricultural Water Management, Elsevier, vol. 145(C), pages 154-162.
    20. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:145:y:2014:i:c:p:171-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.