IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v104y2012icp163-170.html
   My bibliography  Save this article

Treated municipal wastewater reuse in vegetable production

Author

Listed:
  • Cirelli, G.L.
  • Consoli, S.
  • Licciardello, F.
  • Aiello, R.
  • Giuffrida, F.
  • Leonardi, C.

Abstract

Treated municipal wastewater (TWW) can be recycled and reused in Mediterranean countries and other arid and semi-arid regions that are confronting increasing water shortages. The evaluation of the long-term effects of treated wastewater reuse on crops intended for human consumption is of particular interest. This study presents the results of a reuse scenario where tertiary-treated municipal wastewater was supplied for vegetable crop irrigation (i.e., eggplant and tomato crops) in Eastern Sicily (Italy). The levels of faecal contamination of eggplants and tomatoes irrigated by surface and subsurface drip irrigation with urban TWW were analysed and compared in 2008 and 2009 at the experiment site. Irrigation water and fruit samples were collected during the two cropping seasons and evaluated for faecal bacteria (Escherichia coli, faecal coliform and faecal streptococci), Salmonella and helminth eggs. Soil samples were collected and evaluated for a hydraulic behaviour analysis. The study found elevated levels of E. Coli (E. coli) in the irrigation water, which were frequently above the stringent Italian mandatory limits of 50CFU100mL−1 for secondary urban effluents treated at constructed wetlands. Salmonella and helminth eggs were never detected in TWW or on fruit samples. Only two eggplant samples, irrigated by surface drip irrigation, contained 102 CFU/100g of faecal coliform and faecal streptococci. Maximum tomato contamination (on the order of 102CFU/100g for E. coli and 103CFU/100g for faecal coliform and faecal streptococci) was found on samples in contact with soil or plastic mulch, due to a significant increase of microbial biomass activity in these substrates. In the TWW irrigation scenario, maximum fruit yields of 38.5 and 89.7tha−1 were recorded during the two-year trial for the eggplant and tomato crops, respectively. Based on the production and quality components, the tomato crops were successfully grown on TWW-supplied plots, with higher yields (approximately 20%) than on plots supplied with fresh water. In particular, the use of subsurface drip irrigation resulted in a significant increase of the marketable yield (MY) for tomato crops, increasing the number of marketable fruits (MN) and decreasing the number of unmarketable fruits (UMN). The eggplants were sensitive to water-stress conditions resulting from partial clogging of the surface drip emitters, particularly those supplied by fresh water. During both the monitoring years, an induced water shortage caused high dry matter percentages for the eggplants.

Suggested Citation

  • Cirelli, G.L. & Consoli, S. & Licciardello, F. & Aiello, R. & Giuffrida, F. & Leonardi, C., 2012. "Treated municipal wastewater reuse in vegetable production," Agricultural Water Management, Elsevier, vol. 104(C), pages 163-170.
  • Handle: RePEc:eee:agiwat:v:104:y:2012:i:c:p:163-170
    DOI: 10.1016/j.agwat.2011.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377411003350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2011.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    2. Aiello, Rosa & Cirelli, Giuseppe Luigi & Consoli, Simona, 2007. "Effects of reclaimed wastewater irrigation on soil and tomato fruits: A case study in Sicily (Italy)," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 65-72, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmelo Maucieri & Valeria Cavallaro & Caterina Caruso & Maurizio Borin & Mirco Milani & Antonio C. Barbera, 2016. "Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment," Agriculture, MDPI, vol. 6(4), pages 1-15, December.
    2. Jeong, Hanseok & Jang, Taeil & Seong, Chounghyun & Park, Seungwoo, 2014. "Assessing nitrogen fertilizer rates and split applications using the DSSAT model for rice irrigated with urban wastewater," Agricultural Water Management, Elsevier, vol. 141(C), pages 1-9.
    3. Ben Hassena, Ameni & Zouari, Mohamed & Trabelsi, Lina & Khabou, Wahid & Zouari, Nacim, 2018. "Physiological improvements of young olive tree (Olea europaea L. cv. Chetoui) under short term irrigation with treated wastewater," Agricultural Water Management, Elsevier, vol. 207(C), pages 53-58.
    4. Jeong, Hanseok & Bhattarai, Rabin & Adamowski, Jan & Yu, David J., 2020. "Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Zalacáin, David & Martínez-Pérez, Silvia & Bienes, Ramón & García-Díaz, Andrés & Sastre-Merlín, Antonio, 2019. "Salt accumulation in soils and plants under reclaimed water irrigation in urban parks of Madrid (Spain)," Agricultural Water Management, Elsevier, vol. 213(C), pages 468-476.
    6. Nikolaos Tzortzakis & Christos Saridakis & Antonios Chrysargyris, 2020. "Treated Wastewater and Fertigation Applied for Greenhouse Tomato Cultivation Grown in Municipal Solid Waste Compost and Soil Mixtures," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    7. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    8. Egbuikwem, Precious N. & Mierzwa, Jose C. & Saroj, Devendra P., 2020. "Assessment of suspended growth biological process for treatment and reuse of mixed wastewater for irrigation of edible crops under hydroponic conditions," Agricultural Water Management, Elsevier, vol. 231(C).
    9. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    10. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    11. Urbano, Vanessa Ribeiro & Mendonça, Thaís Grandizoli & Bastos, Reinaldo Gaspar & Souza, Claudinei Fonseca, 2017. "Effects of treated wastewater irrigation on soil properties and lettuce yield," Agricultural Water Management, Elsevier, vol. 181(C), pages 108-115.
    12. Manuela Moreira da Silva & Flávia C. Resende & Bárbara Freitas & Jaime Aníbal & António Martins & Amílcar Duarte, 2022. "Urban Wastewater Reuse for Citrus Irrigation in Algarve, Portugal—Environmental Benefits and Carbon Fluxes," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    13. Almuktar, S.A.A.A.N. & Scholz, M., 2016. "Mineral and biological contamination of soil and Capsicum annuum irrigated with recycled domestic wastewater," Agricultural Water Management, Elsevier, vol. 167(C), pages 95-109.
    14. Guangshuai Wang & Zhenjie Du & Huifeng Ning & Hao Liu & Sunusi Amin Abubakar & Yang Gao, 2021. "Changes in GHG Emissions Based on Irrigation Water Quality in Short-Term Incubated Agricultural Soil of the North China Plain," Agriculture, MDPI, vol. 11(12), pages 1-12, December.
    15. Nicoleta Ungureanu & Valentin Vlăduț & Gheorghe Voicu, 2020. "Water Scarcity and Wastewater Reuse in Crop Irrigation," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    16. El-Nashar, Yasser Ismail & Hassan, Badreya A. & Aboelsaadat, Eman M., 2021. "Response of Nemesia (Nemesia × hybridus) plants to different irrigation water sources and arbuscular mycorrhizal fungi inoculation," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Christou, Anastasis & Maratheftis, Grivas & Elia, Michael & Hapeshi, Evroula & Michael, Costas & Fatta-Kassinos, Despo, 2016. "Effects of wastewater applied with discrete irrigation techniques on strawberry plants’ productivity and the safety, quality characteristics and antioxidant capacity of fruits," Agricultural Water Management, Elsevier, vol. 173(C), pages 48-54.
    18. Almuktar, S.A.A.A.N. & Scholz, M. & Al-Isawi, R.H.K. & Sani, A., 2015. "Recycling of domestic wastewater treated by vertical-flow wetlands for irrigating Chillies and Sweet Peppers," Agricultural Water Management, Elsevier, vol. 149(C), pages 1-22.
    19. Mahmoud S. Hashem & Wei Guo & Xuebin Qi & Ping Li, 2022. "Assessing the Effect of Irrigation with Reclaimed Water Using Different Irrigation Techniques on Tomatoes Quality Parameters," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    20. Perulli, Giulio Demetrio & Gaggia, Francesca & Sorrenti, Giovambattista & Donati, Irene & Boini, Alexandra & Bresilla, Kushtrim & Manfrini, Luigi & Baffoni, Loredana & Di Gioia, Diana & Grappadelli, L, 2021. "Treated wastewater as irrigation source: a microbiological and chemical evaluation in apple and nectarine trees," Agricultural Water Management, Elsevier, vol. 244(C).
    21. Suhad A.A.A.N. Almuktar & Miklas Scholz, 2016. "Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers," IJERPH, MDPI, vol. 13(2), pages 1-20, February.
    22. Israel Finkelshtain & Iddo Kan & Mickey Rapaport‐Rom, 2020. "Substitutability of Freshwater and Non‐Freshwater Sources in Irrigation: an Econometric Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1105-1134, August.
    23. Licciardello, F. & Milani, M. & Consoli, S. & Pappalardo, N. & Barbagallo, S. & Cirelli, G., 2018. "Wastewater tertiary treatment options to match reuse standards in agriculture," Agricultural Water Management, Elsevier, vol. 210(C), pages 232-242.
    24. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    2. Gatta, Giuseppe & Libutti, Angela & Gagliardi, Anna & Beneduce, Luciano & Brusetti, Lorenzo & Borruso, Luigimaria & Disciglio, Grazia & Tarantino, Emanuele, 2015. "Treated agro-industrial wastewater irrigation of tomato crop: Effects on qualitative/quantitative characteristics of production and microbiological properties of the soil," Agricultural Water Management, Elsevier, vol. 149(C), pages 33-43.
    3. Libutti, Angela & Gatta, Giuseppe & Gagliardi, Anna & Vergine, Pompilio & Pollice, Alfieri & Beneduce, Luciano & Disciglio, Grazia & Tarantino, Emanuele, 2018. "Agro-industrial wastewater reuse for irrigation of a vegetable crop succession under Mediterranean conditions," Agricultural Water Management, Elsevier, vol. 196(C), pages 1-14.
    4. Gao, Yang & Shao, Guangcheng & Wu, Shiqing & Xiaojun, Wang & Lu, Jia & Cui, Jintao, 2021. "Changes in soil salinity under treated wastewater irrigation: A meta-analysis," Agricultural Water Management, Elsevier, vol. 255(C).
    5. Marofi, Safar & Shakarami, Masoud & Rahimi, Ghasem & Ershadfath, Farnaz, 2015. "Effect of wastewater and compost on leaching nutrients of soil column under basil cultivation," Agricultural Water Management, Elsevier, vol. 158(C), pages 266-276.
    6. Maaß, Oliver & Grundmann, Philipp, 2016. "Added-value from linking the value chains of wastewater treatment, crop production and bioenergy production: A case study on reusing wastewater and sludge in crop production in Braunschweig (Germany)," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 195-211.
    7. Carmelo Maucieri & Valeria Cavallaro & Caterina Caruso & Maurizio Borin & Mirco Milani & Antonio C. Barbera, 2016. "Sorghum Biomass Production for Energy Purpose Using Treated Urban Wastewater and Different Fertilization in a Mediterranean Environment," Agriculture, MDPI, vol. 6(4), pages 1-15, December.
    8. Rahman, Muhammad Muhitur & Hagare, Dharma & Maheshwari, Basant, 2016. "Bayesian Belief Network analysis of soil salinity in a peri-urban agricultural field irrigated with recycled water," Agricultural Water Management, Elsevier, vol. 176(C), pages 280-296.
    9. Demetrio Antonio Zema & Bruno Gianmarco Carrà & Agostino Sorgonà & Antonino Zumbo & Manuel Esteban Lucas-Borja & Isabel Miralles & Raúl Ortega & Rocío Soria & Santo Marcello Zimbone & Paolo Salvatore , 2023. "Sustainable Use of Treated Municipal Wastewater after Chlorination: Short-Term Effects on Crops and Soils," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    10. Al-Absi, K.M. & Al-Nasir, F.M. & Mahadeen, A.Y., 2009. "Mineral content of three olive cultivars irrigated with treated industrial wastewater," Agricultural Water Management, Elsevier, vol. 96(4), pages 616-626, April.
    11. Azunre, Gideon Abagna & Amponsah, Owusu & Takyi, Stephen Appiah & Mensah, Henry & Braimah, Imoro, 2022. "Urban informalities in sub-Saharan Africa (SSA): A solution for or barrier against sustainable city development," World Development, Elsevier, vol. 152(C).
    12. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    13. Ejovi Akpojevwe Abafe & Yonas T. Bahta & Henry Jordaan, 2022. "Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    14. Dimitra Lazaridou & Anastasios Michailidis & Konstantinos Mattas, 2019. "Evaluating the Willingness to Pay for Using Recycled Water for Irrigation," Sustainability, MDPI, vol. 11(19), pages 1-8, September.
    15. Prazeres, Ana R. & Carvalho, Fátima & Rivas, Javier & Patanita, Manuel & Dôres, Jóse, 2014. "Reuse of pretreated cheese whey wastewater for industrial tomato production (Lycopersicon esculentum Mill.)," Agricultural Water Management, Elsevier, vol. 140(C), pages 87-95.
    16. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    17. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    18. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    19. Pedrero, Francisco & Allende, Ana & Gil, María I. & Alarcón, Juan J., 2012. "Soil chemical properties, leaf mineral status and crop production in a lemon tree orchard irrigated with two types of wastewater," Agricultural Water Management, Elsevier, vol. 109(C), pages 54-60.
    20. Suhad A.A.A.N. Almuktar & Miklas Scholz, 2016. "Experimental Assessment of Recycled Diesel Spill-Contaminated Domestic Wastewater Treated by Reed Beds for Irrigation of Sweet Peppers," IJERPH, MDPI, vol. 13(2), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:104:y:2012:i:c:p:163-170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.