IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v173y2019icp364-377.html
   My bibliography  Save this article

The role of soil hydraulic properties in crop water use efficiency: A process-based analysis for some Brazilian scenarios

Author

Listed:
  • Pinheiro, Everton Alves Rodrigues
  • de Jong van Lier, Quirijn
  • Šimůnek, Jirka

Abstract

The need for improvements in the water use efficiency by agricultural ecosystems requires a holistic assessment of the hydraulic functioning of cropped soils, taking into consideration the most relevant interactions and feedbacks that control the soil water budget. We implemented a mechanistic approach to isolate the effects of soil hydraulic properties (K-θ-h) of layered soils on water balance components and land and water productivity, adopting comprehensive scenarios of soil water availability and requirements. The agro-hydrological simulations were performed using the SWAP model integrated with the WOFOST crop growth module. The simulated scenarios included the rainfed crop growth of maize and soybean in three climate zones, evaluating the current climate scenarios as well as two future scenarios, a wetter and a drier one, totaling 108 scenarios simulated for 30 years each. Simulations were performed for six soils, grouped pairwise (3 × 2), where each pair represented the same soil group with two different long-term land uses: natural forest (proxy of a no-tillage system) and conventional agricultural use. The K-θ-h relationships were obtained simultaneously by inverse modeling for the full range of soil water contents commonly found in the domain of crop available water. The agro-hydrological simulations showed that the soil hydraulic properties affect dynamically water balance components and land productivity by relating soil hydraulic functioning to climate patterns and crop water requirements. In general, maize productivity was more sensitive to soil hydraulic properties under future climate scenarios than soybean. While land productivities of maize and soybean increased under the wetter climate scenario, water productivity of both crops was consistently reduced by both future climate scenarios. The K-θ-h of soils under conventional agricultural use over-performed their counterparts under long-term natural forest use, especially regarding land productivity during growing seasons with pronounced dry spells. Depending on the length and timing of drought stress during the growing season, the yield response is determined by soil-specific conditions strictly related to water availability. The long-term average revealed that the sampled loamy sand soils have more favorable hydraulic properties for crop growth; moreover, the reduced unproductive water losses, especially runoff, increased the dynamic water storage of those soils.

Suggested Citation

  • Pinheiro, Everton Alves Rodrigues & de Jong van Lier, Quirijn & Šimůnek, Jirka, 2019. "The role of soil hydraulic properties in crop water use efficiency: A process-based analysis for some Brazilian scenarios," Agricultural Systems, Elsevier, vol. 173(C), pages 364-377.
  • Handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:364-377
    DOI: 10.1016/j.agsy.2019.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X18314227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    2. Jonas Jägermeyr & Amandine Pastor & Hester Biemans & Dieter Gerten, 2017. "Reconciling irrigated food production with environmental flows for Sustainable Development Goals implementation," Nature Communications, Nature, vol. 8(1), pages 1-9, August.
    3. Shang-Ping Xie & Clara Deser & Gabriel A. Vecchi & Matthew Collins & Thomas L. Delworth & Alex Hall & Ed Hawkins & Nathaniel C. Johnson & Christophe Cassou & Alessandra Giannini & Masahiro Watanabe, 2015. "Towards predictive understanding of regional climate change," Nature Climate Change, Nature, vol. 5(10), pages 921-930, October.
    4. Deepak K. Ray & Navin Ramankutty & Nathaniel D. Mueller & Paul C. West & Jonathan A. Foley, 2012. "Recent patterns of crop yield growth and stagnation," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    5. Irmak, Suat & Kukal, Meetpal S. & Mohammed, Ali T. & Djaman, Koffi, 2019. "Disk-till vs. no-till maize evapotranspiration, microclimate, grain yield, production functions and water productivity," Agricultural Water Management, Elsevier, vol. 216(C), pages 177-195.
    6. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    7. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    8. Gao, Yang & Duan, Aiwang & Qiu, Xinqiang & Liu, Zugui & Sun, Jingsheng & Zhang, Junpeng & Wang, Hezhou, 2010. "Distribution of roots and root length density in a maize/soybean strip intercropping system," Agricultural Water Management, Elsevier, vol. 98(1), pages 199-212, December.
    9. Pinheiro, Everton Alves Rodrigues & de Jong van Lier, Quirijn & Inforsato, Leonardo & Šimůnek, Jirka, 2019. "Measuring full-range soil hydraulic properties for the prediction of crop water availability using gamma-ray attenuation and inverse modeling," Agricultural Water Management, Elsevier, vol. 216(C), pages 294-305.
    10. Daniel R. Hirmas & Daniel Giménez & Attila Nemes & Ruth Kerry & Nathaniel A. Brunsell & Cassandra J. Wilson, 2018. "Climate-induced changes in continental-scale soil macroporosity may intensify water cycle," Nature, Nature, vol. 561(7721), pages 100-103, September.
    11. Jalota, S.K. & Singh, Sukhvinder & Chahal, G.B.S. & Ray, S.S. & Panigraghy, S. & Bhupinder-Singh & Singh, K.B., 2010. "Soil texture, climate and management effects on plant growth, grain yield and water use by rainfed maize-wheat cropping system: Field and simulation study," Agricultural Water Management, Elsevier, vol. 97(1), pages 83-90, January.
    12. de Jong van Lier, Quirijn & Wendroth, Ole & van Dam, Jos C., 2015. "Prediction of winter wheat yield with the SWAP model using pedotransfer functions: An evaluation of sensitivity, parameterization and prediction accuracy," Agricultural Water Management, Elsevier, vol. 154(C), pages 29-42.
    13. A. J. Challinor & A.-K. Koehler & J. Ramirez-Villegas & S. Whitfield & B. Das, 2016. "Current warming will reduce yields unless maize breeding and seed systems adapt immediately," Nature Climate Change, Nature, vol. 6(10), pages 954-958, October.
    14. Parajuli, P.B. & Jayakody, P. & Sassenrath, G.F. & Ouyang, Y., 2016. "Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin," Agricultural Water Management, Elsevier, vol. 168(C), pages 112-124.
    15. de Jong van Lier, Quirijn, 2017. "Field capacity, a valid upper limit of crop available water?," Agricultural Water Management, Elsevier, vol. 193(C), pages 214-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas Eduardo Oliveira Aparecido & Pedro Antonio Lorençone & João Antonio Lorençone & Kamila Cunha Meneses & José Reinaldo da Silva Cabral Moraes & Maryzélia Furtado Farias, 2022. "Soil water seasonal and spatial variability in Northeast Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6136-6152, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    2. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    3. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    4. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "A global benchmark map of water productivity for rainfed and irrigated wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1617-1627, October.
    5. Camila Thaiana Rueda da Silva & Edna Maria Bonfim-Silva & Tonny José de Araújo da Silva & Everton Alves Rodrigues Pinheiro & Jefferson Vieira José & André Pereira Freire Ferraz, 2020. "Yield Component Responses of the Brachiaria brizantha Forage Grass to Soil Water Availability in the Brazilian Cerrado," Agriculture, MDPI, vol. 10(1), pages 1-16, January.
    6. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    8. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    9. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    10. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    12. Zwart, Sander J. & Bastiaanssen, Wim G.M. & de Fraiture, Charlotte & Molden, David J., 2010. "WATPRO: A remote sensing based model for mapping water productivity of wheat," Agricultural Water Management, Elsevier, vol. 97(10), pages 1628-1636, October.
    13. Neal, J.S. & Fulkerson, W.J. & Hacker, R.B., 2011. "Differences in water use efficiency among annual forages used by the dairy industry under optimum and deficit irrigation," Agricultural Water Management, Elsevier, vol. 98(5), pages 759-774, March.
    14. Ignacio Lorite & Margarita García-Vila & María-Ascensión Carmona & Cristina Santos & María-Auxiliadora Soriano, 2012. "Assessment of the Irrigation Advisory Services’ Recommendations and Farmers’ Irrigation Management: A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2397-2419, June.
    15. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," Book Chapters,, International Water Management Institute.
    16. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    17. Talebnejad, R. & Sepaskhah, A.R., 2015. "Effect of deficit irrigation and different saline groundwater depths on yield and water productivity of quinoa," Agricultural Water Management, Elsevier, vol. 159(C), pages 225-238.
    18. Li, Zhou & Zhang, Qingping & Wei, Wanrong & Cui, Song & Tang, Wei & Li, Yuan, 2020. "Determining effects of water and nitrogen inputs on wheat yield and water productivity and nitrogen use efficiency in China: A quantitative synthesis," Agricultural Water Management, Elsevier, vol. 242(C).
    19. Sharma, Bharat & Molden, D. & Cook, Simon, 2015. "Water use efficiency in agriculture: measurement, current situation and trends," IWMI Books, Reports H046807, International Water Management Institute.
    20. Tellioglu, Isin & Konandreas, Panos, 2017. "Agricultural Policies, Trade and Sustainable Development in Egypt," National Policies, Trade and Sustainable Development 320158, International Centre for Trade and Sustainable Development (ICTSD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:364-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.