IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v119y2013icp1-9.html
   My bibliography  Save this article

Intensification of coffee systems can increase the effectiveness of REDD mechanisms

Author

Listed:
  • Noponen, Martin R.A.
  • Haggar, Jeremy P.
  • Edwards-Jones, Gareth
  • Healey, John R.

Abstract

In agricultural production systems with shade trees, such as coffee, the increase in greenhouse gas (GHG) emissions from production intensification can be compensated for, or even outweighed, by the increase in carbon sequestration into above-ground and below-ground tree biomass. We use data from a long-term coffee agroforestry experiment in Costa Rica to evaluate the trade-offs between intensification, profitability and net greenhouse gas emissions through two scenarios. First, by assessing the GHG emissions associated with conversion from shaded to more profitable full-sun (un-shaded) systems, we calculate the break-even carbon price which would need to be paid to offset the opportunity cost of not converting. The price per tCO2e of emissions reduction required to compensate for the coffee production revenue foregone varies widely from 9.3 to 196.3 US$ amongst different shaded systems. Second, as an alternative to intensification, production area can be extended onto currently forested land. We estimate this land-use change required to compensate for the shortfall in profitability from retaining lower intensity coffee production systems. For four of the five shade types tested, this land-use change causes additional GHG emissions >5tCO2eha−1yr−1 resulting in net emissions >8tCO2eha−1yr−1 for the whole system. We conclude that instead, by intensifying production, mechanisms similar to REDD that are based on reducing emissions through avoided land-use change (REAL) could play a major role in increasing the climate change mitigation success of agroforestry systems at the same time as aiding REDD through reducing pressure for further forest conversion to agriculture.

Suggested Citation

  • Noponen, Martin R.A. & Haggar, Jeremy P. & Edwards-Jones, Gareth & Healey, John R., 2013. "Intensification of coffee systems can increase the effectiveness of REDD mechanisms," Agricultural Systems, Elsevier, vol. 119(C), pages 1-9.
  • Handle: RePEc:eee:agisys:v:119:y:2013:i:c:p:1-9
    DOI: 10.1016/j.agsy.2013.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X13000395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2013.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Lenzen & D. Moran & K. Kanemoto & B. Foran & L. Lobefaro & A. Geschke, 2012. "International trade drives biodiversity threats in developing nations," Nature, Nature, vol. 486(7401), pages 109-112, June.
    2. Verbist, Bruno & Dinata Putra, Andree Eka & Budidarsono, Suseno, 2005. "Factors driving land use change: Effects on watershed functions in a coffee agroforestry system in Lampung, Sumatra," Agricultural Systems, Elsevier, vol. 85(3), pages 254-270, September.
    3. Jeff Tollefson, 2008. "Think tank reveals plan to manage tropical forests," Nature, Nature, vol. 454(7203), pages 373-373, July.
    4. Louis Verchot & Meine Noordwijk & Serigne Kandji & Tom Tomich & Chin Ong & Alain Albrecht & Jens Mackensen & Cynthia Bantilan & K. Anupama & Cheryl Palm, 2007. "Climate change: linking adaptation and mitigation through agroforestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(5), pages 901-918, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mitiku, Fikadu & Nyssen, Jan & Maertens, Miet, 2017. "Can Coffee Certification Promote Land-sharing and Protect Forest in Ethiopia?," Working Papers 253567, Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics.
    2. Mbatu, Richard S, 2016. "REDD+ research: Reviewing the literature, limitations and ways forward," Forest Policy and Economics, Elsevier, vol. 73(C), pages 140-152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Wiedmann, 2017. "An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab," Economic Systems Research, Taylor & Francis Journals, vol. 29(2), pages 296-312, April.
    2. Lilian Cervo Cabrera & Carlos Eduardo Caldarelli & Marcia Regina Gabardo Camara, 2020. "Mapping collaboration in international coffee certification research," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2597-2618, September.
    3. Muhammet Enis Bulak & Murat Kucukvar, 2022. "How ecoefficient is European food consumption? A frontier‐based multiregional input–output analysis," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 817-832, October.
    4. Raissa Sorgho & Carlos A. Montenegro Quiñonez & Valérie R. Louis & Volker Winkler & Peter Dambach & Rainer Sauerborn & Olaf Horstick, 2020. "Climate Change Policies in 16 West African Countries: A Systematic Review of Adaptation with a Focus on Agriculture, Food Security, and Nutrition," IJERPH, MDPI, vol. 17(23), pages 1-21, November.
    5. Eivind Lekve Bjelle & Johannes Többen & Konstantin Stadler & Thomas Kastner & Michaela C. Theurl & Karl-Heinz Erb & Kjartan-Steen Olsen & Kirsten S. Wiebe & Richard Wood, 2020. "Adding country resolution to EXIOBASE: impacts on land use embodied in trade," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-25, December.
    6. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    7. Meghan Beck-O’Brien & Stefan Bringezu, 2021. "Biodiversity Monitoring in Long-Distance Food Supply Chains: Tools, Gaps and Needs to Meet Business Requirements and Sustainability Goals," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    8. Claudio Szlafsztein, 2014. "Development projects for small rural communities in the Brazilian Amazon region as potential strategies and practices of climate change adaptation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 143-160, February.
    9. Xiaowei Yao & Zhanqi Wang & Hongwei Zhang, 2016. "Dynamic Changes of the Ecological Footprint and Its Component Analysis Response to Land Use in Wuhan, China," Sustainability, MDPI, vol. 8(4), pages 1-14, April.
    10. Emmanuel Kasongo Yakusu & Joris Van Acker & Hans Van de Vyver & Nils Bourland & José Mbifo Ndiapo & Théophile Besango Likwela & Michel Lokonda Wa Kipifo & Amand Mbuya Kankolongo & Jan Van den Bulcke &, 2023. "Ground-based climate data show evidence of warming and intensification of the seasonal rainfall cycle during the 1960–2020 period in Yangambi, central Congo Basin," Climatic Change, Springer, vol. 176(10), pages 1-28, October.
    11. Jonas Bunsen & Matthias Finkbeiner, 2022. "An Introductory Review of Input-Output Analysis in Sustainability Sciences Including Potential Implications of Aggregation," Sustainability, MDPI, vol. 15(1), pages 1-24, December.
    12. Zhao, Hongyan & Zhang, Qiang & Huo, Hong & Lin, Jintai & Liu, Zhu & Wang, Haikun & Guan, Dabo & He, Kebin, 2016. "Environment-economy tradeoff for Beijing–Tianjin–Hebei’s exports," Applied Energy, Elsevier, vol. 184(C), pages 926-935.
    13. Bonilla-Moheno, Martha & Aide, T. Mitchell, 2020. "Beyond deforestation: Land cover transitions in Mexico," Agricultural Systems, Elsevier, vol. 178(C).
    14. Zhou, Xin & Yano, Takashi & Kojima, Satoshi, 2013. "Proposal for a national inventory adjustment for trade in the presence of border carbon adjustment: Assessing carbon tax policy in Japan," Energy Policy, Elsevier, vol. 63(C), pages 1098-1110.
    15. Anna Herzberger & Min Gon Chung & Kelly Kapsar & Kenneth A. Frank & Jianguo Liu, 2019. "Telecoupled Food Trade Affects Pericoupled Trade and Intracoupled Production," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    16. Johannes Többen & Tobias Heinrich Kronenberg, 2015. "Construction Of Multi-Regional Input--Output Tables Using The Charm Method," Economic Systems Research, Taylor & Francis Journals, vol. 27(4), pages 487-507, December.
    17. Simona Ioana Ghita & Andreea Simona Saseanu & Rodica-Manuela Gogonea & Catalin-Emilian Huidumac-Petrescu, 2018. "Perspectives of Ecological Footprint in European Context under the Impact of Information Society and Sustainable Development," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    18. Chris Bachmann & Matthew J. Roorda & Chris Kennedy, 2015. "Developing A Multi-Scale Multi-Region Input-Output Model," Economic Systems Research, Taylor & Francis Journals, vol. 27(2), pages 172-193, June.
    19. Trinh, Thoai Quang & Rañola, Roberto F. & Camacho, Leni D. & Simelton, Elisabeth, 2018. "Determinants of farmers’ adaptation to climate change in agricultural production in the central region of Vietnam," Land Use Policy, Elsevier, vol. 70(C), pages 224-231.
    20. Guillaume Lafortune & Grayson Fuller & Guido Schmidt-Traub & Christian Kroll, 2020. "How Is Progress towards the Sustainable Development Goals Measured? Comparing Four Approaches for the EU," Sustainability, MDPI, vol. 12(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:119:y:2013:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.